Suppr超能文献

一种用于研究伊拉克和阿富汗归国退伍军人生活质量变化的贝叶斯模型平均方法。

A Bayesian model averaging approach to examining changes in quality of life among returning Iraq and Afghanistan veterans.

作者信息

Stock Eileen M, Kimbrel Nathan A, Meyer Eric C, Copeland Laurel A, Monte Ralph, Zeber John E, Gulliver Suzy Bird, Morissette Sandra B

机构信息

Center for Applied Health Research, Central Texas Veterans Health Care System in collaboration with Scott & White Healthcare, Temple, TX, USA; Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA.

出版信息

Int J Methods Psychiatr Res. 2014 Sep;23(3):345-58. doi: 10.1002/mpr.1442. Epub 2014 Jun 18.

Abstract

Many Veterans from the conflicts in Iraq and Afghanistan return home with physical and psychological impairments that impact their ability to enjoy normal life activities and diminish their quality of life (QoL). The present research aimed to identify predictors of QoL over an eight-month period using Bayesian model averaging (BMA), which is a statistical technique useful for maximizing power with smaller sample sizes. A sample of 117 Iraq and Afghanistan Veterans receiving care in a southwestern health care system was recruited, and BMA examined the impact of key demographics (e.g., age, gender), diagnoses (e.g., depression), and treatment modalities (e.g., individual therapy, medication) on QoL over time. Multiple imputation based on Gibbs sampling was employed for incomplete data (6.4% missingness). Average follow-up QoL scores were significantly lower than at baseline (73.2 initial versus 69.5 four-month and 68.3 eight-month). Employment was associated with increased QoL during each follow-up, while post-traumatic stress disorder and Black race were inversely related. Additionally, predictive models indicated that depression, income, treatment for a medical condition, and group psychotherapy were strong negative predictors of four-month QoL but not eight-month QoL.

摘要

许多来自伊拉克和阿富汗冲突地区的退伍军人回国时伴有身体和心理损伤,这些损伤影响了他们享受正常生活活动的能力,并降低了他们的生活质量(QoL)。本研究旨在使用贝叶斯模型平均法(BMA)确定八个月期间生活质量的预测因素,BMA是一种有助于在较小样本量下最大化功效的统计技术。招募了117名在西南医疗系统接受治疗的伊拉克和阿富汗退伍军人作为样本,BMA研究了关键人口统计学特征(如年龄、性别)、诊断结果(如抑郁症)和治疗方式(如个体治疗、药物治疗)随时间对生活质量的影响。对于不完整数据(缺失率为6.4%),采用基于吉布斯抽样的多重插补法。平均随访生活质量得分显著低于基线水平(初始时为73.2,四个月时为69.5,八个月时为68.3)。在每次随访期间,就业与生活质量提高相关,而创伤后应激障碍和黑人种族则呈负相关。此外,预测模型表明,抑郁症、收入、医疗状况治疗和团体心理治疗是四个月生活质量的强负预测因素,但不是八个月生活质量的强负预测因素。

相似文献

1
A Bayesian model averaging approach to examining changes in quality of life among returning Iraq and Afghanistan veterans.
Int J Methods Psychiatr Res. 2014 Sep;23(3):345-58. doi: 10.1002/mpr.1442. Epub 2014 Jun 18.
2
Mental health diagnoses and utilization of VA non-mental health medical services among returning Iraq and Afghanistan veterans.
J Gen Intern Med. 2010 Jan;25(1):18-24. doi: 10.1007/s11606-009-1117-3. Epub 2009 Sep 29.
4
Sexual dysfunction among male veterans returning from Iraq and Afghanistan: prevalence and correlates.
J Sex Med. 2013 Feb;10(2):516-23. doi: 10.1111/j.1743-6109.2012.02978.x. Epub 2012 Oct 22.
9
Race/ethnicity and gender differences in mental health diagnoses among Iraq and Afghanistan veterans.
Psychiatry Res. 2015 Oct 30;229(3):724-31. doi: 10.1016/j.psychres.2015.08.013. Epub 2015 Aug 10.

引用本文的文献

本文引用的文献

3
An evaluation of prior influence on the predictive ability of Bayesian model averaging.
Oecologia. 2012 Mar;168(3):719-26. doi: 10.1007/s00442-011-2118-6. Epub 2011 Sep 23.
5
Post-traumatic stress disorder, depression, and health-related quality of life in OEF/OIF veterans.
Qual Life Res. 2012 Feb;21(1):99-103. doi: 10.1007/s11136-011-9918-3. Epub 2011 Apr 23.
6
Prevalence and correlates of alcohol misuse among returning Afghanistan and Iraq veterans.
Addict Behav. 2011 Aug;36(8):801-6. doi: 10.1016/j.addbeh.2010.12.032. Epub 2011 Jan 13.
10
Perceived burden in spouses of National Guard/Reserve service members deployed during Operations Enduring and Iraqi Freedom.
J Anxiety Disord. 2011 Apr;25(3):346-51. doi: 10.1016/j.janxdis.2010.10.008. Epub 2010 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验