Dorfmueller Helge C, Ferenbach Andrew T, Borodkin Vladimir S, van Aalten Daan M F
Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
J Biol Chem. 2014 Aug 15;289(33):23020-23028. doi: 10.1074/jbc.M114.563353. Epub 2014 Jun 18.
Chitin synthases (CHS) produce chitin, an essential component of the fungal cell wall. The molecular mechanism of processive chitin synthesis is not understood, limiting the discovery of new inhibitors of this enzyme class. We identified the bacterial glycosyltransferase NodC as an appropriate model system to study the general structure and reaction mechanism of CHS. A high throughput screening-compatible novel assay demonstrates that a known inhibitor of fungal CHS also inhibit NodC. A structural model of NodC, on the basis of the recently published BcsA cellulose synthase structure, enabled probing of the catalytic mechanism by mutagenesis, demonstrating the essential roles of the DD and QXXRW catalytic motifs. The NodC membrane topology was mapped, validating the structural model. Together, these approaches give insight into the CHS structure and mechanism and provide a platform for the discovery of inhibitors for this antifungal target.
几丁质合成酶(CHS)可产生几丁质,它是真菌细胞壁的重要组成部分。连续性几丁质合成的分子机制尚不清楚,这限制了此类酶新抑制剂的发现。我们确定细菌糖基转移酶NodC是研究CHS一般结构和反应机制的合适模型系统。一种与高通量筛选兼容的新型检测方法表明,一种已知的真菌CHS抑制剂也能抑制NodC。基于最近发表的BcsA纤维素合成酶结构构建的NodC结构模型,能够通过诱变探究催化机制,证明了DD和QXXRW催化基序的重要作用。绘制了NodC的膜拓扑结构,验证了该结构模型。这些方法共同深入了解了CHS的结构和机制,并为发现针对该抗真菌靶点的抑制剂提供了一个平台。