Suppr超能文献

根瘤菌结瘤蛋白NodC是根瘤菌因子生物合成中几丁质寡糖链长度的重要决定因素。

Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis.

作者信息

Kamst E, Pilling J, Raamsdonk L M, Lugtenberg B J, Spaink H P

机构信息

Institute of Molecular Plant Sciences, Leiden University, The Netherlands.

出版信息

J Bacteriol. 1997 Apr;179(7):2103-8. doi: 10.1128/jb.179.7.2103-2108.1997.

Abstract

Synthesis of chitin oligosaccharides by NodC is the first committed step in the biosynthesis of rhizobial lipochitin oligosaccharides (LCOs). The distribution of oligosaccharide chain lengths in LCOs differs between various Rhizobium species. We expressed the cloned nodC genes of Rhizobium meliloti, R. leguminosarum bv. viciae, and R. loti in Escherichia coli. The in vivo activities of the various NodC proteins differed with respect to the length of the major chitin oligosaccharide produced. The clearest difference was observed between strains with R. meliloti and R. loti NodC, producing chitintetraose and chitinpentaose, respectively. In vitro experiments, using UDP-[14C]GlcNAc as a precursor, show that this difference reflects intrinsic properties of these NodC proteins and that it is not influenced by the UDP-GlcNAc concentration. Analysis of oligosaccharide chain lengths in LCOs produced by a R. leguminosarum bv. viciae nodC mutant, expressing the three cloned nodC genes mentioned above, shows that the difference in oligosaccharide chain length in LCOs of R. meliloti and R. leguminosarum bv. viciae is due only to nodC. The exclusive production of LCOs which contain a chitinpentaose backbone by R. loti strains is not due to NodC but to end product selection by Nod proteins involved in further modification of the chitin oligosaccharide. These results indicate that nodC contributes to the host specificity of R. meliloti, a conclusion consistent with the results of several studies which have shown that the lengths of the oligosaccharide backbones of LCOs can strongly influence their activities on host plants.

摘要

NodC合成几丁质寡糖是根瘤菌脂几丁质寡糖(LCOs)生物合成中的首个关键步骤。不同根瘤菌属物种的LCOs中寡糖链长度的分布有所不同。我们将苜蓿根瘤菌、豌豆根瘤菌蚕豆生物型和百脉根根瘤菌的克隆nodC基因在大肠杆菌中进行了表达。不同NodC蛋白的体内活性在产生的主要几丁质寡糖长度方面存在差异。在分别产生几丁质四糖和几丁质五糖的苜蓿根瘤菌和百脉根根瘤菌NodC菌株之间观察到了最明显的差异。使用UDP-[14C]GlcNAc作为前体的体外实验表明,这种差异反映了这些NodC蛋白的内在特性,且不受UDP-GlcNAc浓度的影响。对表达上述三个克隆nodC基因的豌豆根瘤菌蚕豆生物型nodC突变体产生的LCOs中的寡糖链长度进行分析,结果表明苜蓿根瘤菌和豌豆根瘤菌蚕豆生物型LCOs中寡糖链长度的差异仅归因于nodC。百脉根根瘤菌菌株仅产生含有几丁质五糖主链的LCOs并非由于NodC,而是由于参与几丁质寡糖进一步修饰的Nod蛋白对终产物的选择。这些结果表明nodC对苜蓿根瘤菌的宿主特异性有贡献,这一结论与多项研究结果一致,这些研究表明LCOs寡糖主链的长度可强烈影响其对宿主植物的活性。

相似文献

4
Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum.
Mol Microbiol. 1994 Sep;13(5):821-31. doi: 10.1111/j.1365-2958.1994.tb00474.x.
5
Mass spectrometric analysis of chitin oligosaccharides produced by Rhizobium NodC protein in Escherichia coli.
J Bacteriol. 1995 Nov;177(21):6282-5. doi: 10.1128/jb.177.21.6282-6285.1995.
7
Genetic complementation of rhizobial nod mutants with Frankia DNA: artifact or reality?
Mol Gen Genet. 1998 Oct;260(1):115-9. doi: 10.1007/s004380050877.
9
The common nodABC genes of Rhizobium meliloti are host-range determinants.
Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15305-10. doi: 10.1073/pnas.93.26.15305.

引用本文的文献

2
RinRK1 enhances NF receptors accumulation in nanodomain-like structures at root-hair tip.
Nat Commun. 2024 Apr 26;15(1):3568. doi: 10.1038/s41467-024-47794-4.
3
GmBES1-1 dampens the activity of GmNSP1/2 to mediate brassinosteroid inhibition of nodulation in soybean.
Plant Commun. 2023 Nov 13;4(6):100627. doi: 10.1016/j.xplc.2023.100627. Epub 2023 May 19.
5
Customized chitooligosaccharide production-controlling their length engineering of rhizobial chitin synthases and the choice of expression system.
Front Bioeng Biotechnol. 2022 Dec 14;10:1073447. doi: 10.3389/fbioe.2022.1073447. eCollection 2022.
6
Synthetic biology strategies for improving microbial synthesis of "green" biopolymers.
J Biol Chem. 2018 Apr 6;293(14):5053-5061. doi: 10.1074/jbc.TM117.000368. Epub 2018 Jan 16.
7
Evolutionarily Conserved , T1SS, and Hydrogenase System in Rhizobia of and .
Front Microbiol. 2017 Nov 20;8:2282. doi: 10.3389/fmicb.2017.02282. eCollection 2017.
8
New insights into Nod factor biosynthesis: Analyses of chitooligomers and lipo-chitooligomers of Rhizobium sp. IRBG74 mutants.
Carbohydr Res. 2016 Nov 3;434:83-93. doi: 10.1016/j.carres.2016.08.001. Epub 2016 Aug 3.
9
Temperature-Dependent Expression of NodC and Community Structure of Soybean-Nodulating Bradyrhizobia.
Microbes Environ. 2016;31(1):27-32. doi: 10.1264/jsme2.ME15114. Epub 2016 Feb 13.
10
A structural and biochemical model of processive chitin synthesis.
J Biol Chem. 2014 Aug 15;289(33):23020-23028. doi: 10.1074/jbc.M114.563353. Epub 2014 Jun 18.

本文引用的文献

2
Conserved Nodulation Genes in Rhizobium meliloti and Rhizobium trifolii.
Appl Environ Microbiol. 1985 Jun;49(6):1432-5. doi: 10.1128/aem.49.6.1432-1435.1985.
3
Root Hair Deformation Activity of Nodulation Factors and Their Fate on Vicia sativa.
Plant Physiol. 1994 Jul;105(3):787-797. doi: 10.1104/pp.105.3.787.
6
The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase.
Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2669-73. doi: 10.1073/pnas.91.7.2669.
7
The use of divalent cations and pH for the determination of specific yeast chitin synthetases.
Anal Biochem. 1994 Jun;219(2):368-72. doi: 10.1006/abio.1994.1278.
8
9
The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules.
Mol Plant Microbe Interact. 1994 Nov-Dec;7(6):684-95. doi: 10.1094/mpmi-7-0684.
10
Role of rhizobial lipo-chitin oligosaccharide signal molecules in root nodule organogenesis.
Plant Mol Biol. 1994 Dec;26(5):1413-22. doi: 10.1007/BF00016482.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验