Suppr超能文献

基于复杂脉冲和脉冲时间依赖可塑性的监督学习。

Supervised learning with complex spikes and spike-timing-dependent plasticity.

作者信息

Houghton Conor

机构信息

Department of Computer Science, University of Bristol, Bristol, England.

出版信息

PLoS One. 2014 Jun 19;9(6):e99635. doi: 10.1371/journal.pone.0099635. eCollection 2014.

Abstract

One distinctive feature of Purkinje cells is that they have two types of discharge: in addition to simple spikes they fire complex spikes in response to input from the climbing fibers. These complex spikes have an initial rapid burst of spikes and spikelets followed by a sustained depolarization; in some models of cerebellar function this climbing fiber input supervises learning in Purkinje cells. On the other hand, synaptic plasticity is often thought to rely on the timing of pre-synaptic and post-synaptic spikes. It is suggested here that the period of depolarization following a complex spike, combined with a simple spike-timing-dependent plasticity rule, gives a mechanism for the climbing fiber to supervise learning in the Purkinje cell. This proposal is illustrated using a simple simulation in which it is seen that the climbing fiber succeeds in supervising the learning.

摘要

浦肯野细胞的一个显著特征是它们有两种放电类型

除了简单锋电位外,它们还会对来自攀缘纤维的输入产生反应而发放复合锋电位。这些复合锋电位有一个初始的快速锋电位和锋电位簇发放,随后是持续去极化;在一些小脑功能模型中,这种攀缘纤维输入对浦肯野细胞的学习进行监督。另一方面,突触可塑性通常被认为依赖于突触前和突触后锋电位的时间。本文提出,复合锋电位后的去极化期,结合简单的锋电位时间依赖性可塑性规则,为攀缘纤维监督浦肯野细胞的学习提供了一种机制。通过一个简单模拟说明了这一观点,从中可以看到攀缘纤维成功地监督了学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f1/4063772/3f059a73e28f/pone.0099635.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验