Hay Duncan A, Fedorov Oleg, Martin Sarah, Singleton Dean C, Tallant Cynthia, Wells Christopher, Picaud Sarah, Philpott Martin, Monteiro Octovia P, Rogers Catherine M, Conway Stuart J, Rooney Timothy P C, Tumber Anthony, Yapp Clarence, Filippakopoulos Panagis, Bunnage Mark E, Müller Susanne, Knapp Stefan, Schofield Christopher J, Brennan Paul E
Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3TA, U.K.
J Am Chem Soc. 2014 Jul 2;136(26):9308-19. doi: 10.1021/ja412434f. Epub 2014 Jun 19.
Small-molecule inhibitors that target bromodomains outside of the bromodomain and extra-terminal (BET) sub-family are lacking. Here, we describe highly potent and selective ligands for the bromodomain module of the human lysine acetyl transferase CBP/p300, developed from a series of 5-isoxazolyl-benzimidazoles. Our starting point was a fragment hit, which was optimized into a more potent and selective lead using parallel synthesis employing Suzuki couplings, benzimidazole-forming reactions, and reductive aminations. The selectivity of the lead compound against other bromodomain family members was investigated using a thermal stability assay, which revealed some inhibition of the structurally related BET family members. To address the BET selectivity issue, X-ray crystal structures of the lead compound bound to the CREB binding protein (CBP) and the first bromodomain of BRD4 (BRD4(1)) were used to guide the design of more selective compounds. The crystal structures obtained revealed two distinct binding modes. By varying the aryl substitution pattern and developing conformationally constrained analogues, selectivity for CBP over BRD4(1) was increased. The optimized compound is highly potent (Kd = 21 nM) and selective, displaying 40-fold selectivity over BRD4(1). Cellular activity was demonstrated using fluorescence recovery after photo-bleaching (FRAP) and a p53 reporter assay. The optimized compounds are cell-active and have nanomolar affinity for CBP/p300; therefore, they should be useful in studies investigating the biological roles of CBP and p300 and to validate the CBP and p300 bromodomains as therapeutic targets.
目前缺乏针对溴结构域及额外末端(BET)亚家族之外的溴结构域的小分子抑制剂。在此,我们描述了一系列从5-异恶唑基-苯并咪唑开发而来的、对人赖氨酸乙酰转移酶CBP/p300的溴结构域模块具有高效和选择性的配体。我们的起始点是一个片段命中物,通过使用铃木偶联、苯并咪唑形成反应和还原胺化的平行合成方法,将其优化为一种更高效且选择性更强的先导化合物。使用热稳定性测定法研究了先导化合物对其他溴结构域家族成员的选择性,结果显示对结构相关的BET家族成员有一定抑制作用。为了解决BET选择性问题,利用与CREB结合蛋白(CBP)和BRD4的第一个溴结构域(BRD4(1))结合的先导化合物的X射线晶体结构来指导设计更具选择性的化合物。获得的晶体结构揭示了两种不同的结合模式。通过改变芳基取代模式并开发构象受限类似物,提高了对CBP相对于BRD4(1)的选择性。优化后的化合物具有高效性(Kd = 21 nM)和选择性,对BRD4(1)的选择性高达40倍。通过光漂白后荧光恢复(FRAP)和p53报告基因测定法证明了其细胞活性。优化后的化合物具有细胞活性,对CBP/p300具有纳摩尔亲和力;因此,它们在研究CBP和p300的生物学作用以及验证CBP和p300溴结构域作为治疗靶点的研究中应该会很有用。