Kinnun Jacob J, Mallikarjunaiah K J, Petrache Horia I, Brown Michael F
Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt B):246-59. doi: 10.1016/j.bbamem.2014.06.004. Epub 2014 Jun 16.
This article reviews the application of solid-state ²H nuclear magnetic resonance (NMR) spectroscopy for investigating the deformation of lipid bilayers at the atomistic level. For liquid-crystalline membranes, the average structure is manifested by the segmental order parameters (SCD) of the lipids. Solid-state ²H NMR yields observables directly related to the stress field of the lipid bilayer. The extent to which lipid bilayers are deformed by osmotic pressure is integral to how lipid-protein interactions affect membrane functions. Calculations of the average area per lipid and related structural properties are pertinent to bilayer remodeling and molecular dynamics (MD) simulations of membranes. To establish structural quantities, such as area per lipid and volumetric bilayer thickness, a mean-torque analysis of ²H NMR order parameters is applied. Osmotic stress is introduced by adding polymer solutions or by gravimetric dehydration, which are thermodynamically equivalent. Solid-state NMR studies of lipids under osmotic stress probe membrane interactions involving collective bilayer undulations, order-director fluctuations, and lipid molecular protrusions. Removal of water yields a reduction of the mean area per lipid, with a corresponding increase in volumetric bilayer thickness, by up to 20% in the liquid-crystalline state. Hydrophobic mismatch can shift protein states involving mechanosensation, transport, and molecular recognition by G-protein-coupled receptors. Measurements of the order parameters versus osmotic pressure yield the elastic area compressibility modulus and the corresponding bilayer thickness at an atomistic level. Solid-state ²H NMR thus reveals how membrane deformation can affect protein conformational changes within the stress field of the lipid bilayer.
本文综述了固态²H核磁共振(NMR)光谱在原子水平上研究脂质双层变形方面的应用。对于液晶膜,脂质的链段序参数(SCD)体现了其平均结构。固态²H NMR可直接产生与脂质双层应力场相关的可观测量。脂质双层因渗透压而发生变形的程度,对于脂质 - 蛋白质相互作用如何影响膜功能至关重要。计算每个脂质的平均面积以及相关的结构性质,与双层重塑和膜的分子动力学(MD)模拟相关。为了确定诸如每个脂质的面积和体积双层厚度等结构量,应用了对²H NMR序参数的平均扭矩分析。通过添加聚合物溶液或重量脱水引入渗透应力,这两种方式在热力学上是等效的。对处于渗透应力下的脂质进行固态NMR研究,可探测涉及集体双层波动、有序取向波动和脂质分子突出的膜相互作用。去除水分会使每个脂质的平均面积减小,同时体积双层厚度相应增加,在液晶态下增加幅度可达20%。疏水不匹配可改变涉及机械传感、转运以及G蛋白偶联受体的分子识别等过程的蛋白质状态。测量序参数随渗透压的变化,可在原子水平上得出弹性面积压缩模量和相应的双层厚度。因此,固态²H NMR揭示了膜变形如何在脂质双层的应力场中影响蛋白质构象变化。