He Pei
Amgen Inc. Global Biostatistical, Sciences 1120 Veterans Boulevard, South San Francisco, CA 94080, United States.
Contemp Clin Trials. 2014 Jul;38(2):333-7. doi: 10.1016/j.cct.2014.06.005. Epub 2014 Jun 16.
The advancements in biotechnology and genetics lead to an increasing research interest in personalized medicine, where a patient's genetic profile or biological traits contribute to choosing the most effective treatment for the patient. The process starts with finding a specific biomarker among all possible candidates that can best predict the treatment effect. After a biomarker is chosen, identifying a cut point of the biomarker value that splits the patients into treatment effective and non-effective subgroups becomes an important scientific problem. Numerous methods have been proposed to validate the predictive marker and select the appropriate cut points either prospectively or retrospectively using clinical trial data. In trials with survival outcomes, the current practice applies an interaction testing procedure and chooses the cut point that minimizes the p-values for the tests. Such method assumes independence between the baseline hazard and biomarker value. In reality, however, this assumption is often violated, as the chosen biomarker might also be prognostic in addition to its predictive nature for treatment effect. In this paper we propose a block-wise estimation and a sequential testing approach to identify the cut point in biomarkers that can group the patients into subsets based on their distinct treatment outcomes without assuming independence between the biomarker and baseline hazard. Numerical results based on simulated survival data show that the proposed method could pinpoint accurately the cut points in biomarker values that separate the patient subpopulations into subgroups with distinctive treatment outcomes.
生物技术和遗传学的进步引发了人们对个性化医疗的研究兴趣日益浓厚,在个性化医疗中,患者的基因特征或生物学特性有助于为患者选择最有效的治疗方法。这个过程始于在所有可能的候选物中找到一个能够最佳预测治疗效果的特定生物标志物。选择生物标志物后,确定生物标志物值的一个切点,将患者分为治疗有效和无效亚组,就成为一个重要的科学问题。已经提出了许多方法来验证预测标志物,并使用临床试验数据前瞻性或回顾性地选择合适的切点。在有生存结局的试验中,目前的做法是应用交互检验程序,并选择使检验的p值最小的切点。这种方法假定基线风险与生物标志物值之间相互独立。然而,在现实中,这个假设常常被违反,因为所选的生物标志物除了对治疗效果具有预测性外,可能还具有预后性。在本文中,我们提出了一种分块估计和序贯检验方法,以确定生物标志物中的切点,该切点可以根据患者不同的治疗结局将其分组,而无需假定生物标志物与基线风险之间相互独立。基于模拟生存数据的数值结果表明,所提出的方法能够准确地找出生物标志物值中的切点,这些切点将患者亚群分为具有不同治疗结局的亚组。