Kornarakis I, Lykakis I N, Vordos N, Armatas G S
Department of Materials Science and Technology, University of Crete, Heraklion 71003, Crete, Greece.
Nanoscale. 2014 Aug 7;6(15):8694-703. doi: 10.1039/c4nr01094a.
Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster anions with different reduction potentials, such as PW12O40(3-), SiW12O40(4-) and PMo12O40(3-), were employed as electron acceptors in these ternary heterojunction photocatalysts. Characterization by small-angle X-ray scattering, X-ray diffraction, transmission electron microscopy and N2 physisorption measurements showed hexagonal arrays of POM-Ag2S-CdS hybrid nanorods with large internal BET surface areas and uniform mesopores. The Keggin structure of the incorporated POM clusters was also verified by elemental X-ray spectroscopy microanalysis, infrared and diffuse-reflectance ultraviolet-visible spectroscopy. These new porous materials were implemented as visible-light-driven photocatalysts, displaying exceptional high activity in aerobic oxidation of various para-substituted benzyl alcohols to the corresponding carbonyl compounds. Our experiments show that the spatial separation of photogenerated electrons and holes at CdS through the potential gradient along the CdS-Ag2S-POM interfaces is responsible for the increased photocatalytic activity.
多孔多组分半导体材料由于具有大的且易于接触的孔表面积和高电荷分离效率,因而表现出改善的光催化性能。在此,我们报告通过两步硬模板法和拓扑离子交换化学过程合成了有序的多孔多金属氧酸盐(POM)-Ag2S-CdS杂化介观结构,其具有可控的组成和高光催化活性。具有不同还原电位的Ag2S化合物和多金属氧酸盐簇阴离子,如PW12O40(3-)、SiW12O40(4-)和PMo12O40(3-),被用作这些三元异质结光催化剂中的电子受体。通过小角X射线散射、X射线衍射、透射电子显微镜和N2物理吸附测量进行的表征表明,POM-Ag2S-CdS杂化纳米棒呈六边形阵列,具有大的内部BET表面积和均匀的介孔。通过元素X射线光谱微分析、红外光谱和漫反射紫外-可见光谱也验证了掺入的POM簇的Keggin结构。这些新型多孔材料被用作可见光驱动的光催化剂,在将各种对位取代的苯甲醇有氧氧化为相应的羰基化合物方面表现出极高的活性。我们的实验表明,光生电子和空穴在CdS处通过沿CdS-Ag2S-POM界面的电位梯度进行空间分离,这是光催化活性提高的原因。