Schmitt Christian, Rack Alexander, Betz Oliver
Eberhard Karls Universität Tübingen, Institut für Evolution und Ökologie, Professur für Evolutionsbiologie der Invertebraten, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
Eberhard Karls Universität Tübingen, Institut für Evolution und Ökologie, Professur für Evolutionsbiologie der Invertebraten, Auf der Morgenstelle 28, D-72076 Tübingen, Germany.
J Exp Biol. 2014 Sep 1;217(Pt 17):3095-107. doi: 10.1242/jeb.092742. Epub 2014 Jun 19.
The kinematics of the biting and chewing mouthparts of insects is a complex interaction of various components forming multiple jointed chains. The non-invasive technique of in vivo cineradiography by means of synchrotron radiation was employed to elucidate the motion cycles of the mouthparts in the cockroach Periplaneta americana. Digital X-ray footage sequences were used in order to calculate pre-defined angles and distances, each representing characteristic aspects of the movement pattern. We were able to analyze the interactions of the mouthpart components and to generate a functional model of maxillary movement by integrating kinematic results, morphological dissections and fluorescence microscopy. During the opening and closing cycles, which take about 450-500 ms on average, we found strong correlations between the measured maxillary and mandibular angles, indicating a strong neural coordination of these movements. This is manifested by strong antiphasic courses of the maxillae and the mandibles, antiphasic patterns of the rotation of the cardo about its basic articulation at the head and by the deflection between the cardo and stipes. In our functional model of the maxilla, its movement pattern is explained by the antagonistic activity of four adductor-promotor muscles and two abductor-remotor muscles. However, beyond the observed intersegmental and bilateral stereotypy, certain amounts of variation across subsequent cycles within a sequence were observed with respect to the degree of correlation between the various mouthparts, the maximum, minimum and time course of the angular movements. Although generally correlated with the movement pattern of the mandibles and the maxillary cardo-stipes complex, such plastic behaviour was especially observed in the maxillary palpi and the labium.
昆虫咬嚼式口器的运动学是由多个形成多关节链的不同部件构成的复杂相互作用。利用同步辐射进行体内X射线电影摄影的非侵入性技术,来阐明美洲大蠊口器的运动周期。使用数字X射线影像序列来计算预先定义的角度和距离,每个角度和距离都代表运动模式的特征方面。通过整合运动学结果、形态解剖和荧光显微镜观察,我们能够分析口器各部件的相互作用,并生成一个上颚运动的功能模型。在平均约450 - 500毫秒的开闭周期中,我们发现测量的上颚和下颚角度之间存在很强的相关性,表明这些运动有很强的神经协调作用。这表现为上颚和下颚的强烈反相运动过程、轴节围绕其在头部的基本关节的反相旋转模式以及轴节和柄节之间的偏斜。在我们的上颚功能模型中,其运动模式由四块内收 - 前推肌和两块外展 - 后拉肌的拮抗活动来解释。然而,除了观察到的节间和双侧刻板性之外,在一个序列中后续周期内,在各口器之间的相关程度、角运动的最大值、最小值和时间过程方面,还观察到了一定量的变化。尽管通常与下颚和上颚轴节 - 柄节复合体的运动模式相关,但这种可塑性行为在上颚须和下唇中尤为明显。