David Sina, Funken Johannes, Potthast Wolfgang, Blanke Alexander
Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany.
Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany ARCUS Clinics Pforzheim, Rastatter Strasse 17-19, 75179 Pforzheim, Germany.
J R Soc Interface. 2016 Oct;13(123). doi: 10.1098/rsif.2016.0675.
Insects show a remarkable diversity of muscle configurations, yet the factors leading to this functional diversity are poorly understood. Here, we use musculoskeletal modelling to understand the spatio-temporal activity of an insect muscle in several dragonfly species and to reveal potential mechanical factors leading to a particular muscle configuration. Bite characteristics potentially show systematic signal, but absolute bite force is not correlated with size. Muscle configuration and inverse dynamics show that the wider relative area of muscle attachment and the higher activity of subapical muscle groups are responsible for this high bite force. This wider attachment area is, however, not an evolutionary trend within dragonflies. Our inverse dynamic data, furthermore, show that maximum bite forces most probably do not reflect maximal muscle force production capability in all studied species. The thin head capsule and the attachment areas of muscles most probably limit the maximum force output of the mandibular muscles.
昆虫的肌肉结构表现出显著的多样性,但导致这种功能多样性的因素却鲜为人知。在此,我们运用肌肉骨骼建模来了解几种蜻蜓物种中某一昆虫肌肉的时空活动,并揭示导致特定肌肉结构的潜在机械因素。叮咬特征可能显示出系统性信号,但绝对咬合力与体型并无关联。肌肉结构和逆动力学表明,肌肉附着的相对面积更大以及顶端下肌肉群的活性更高是造成这种高咬合力的原因。然而,这种更宽的附着面积并非蜻蜓的进化趋势。此外,我们的逆动力学数据表明,在所有研究的物种中,最大咬合力很可能并不反映肌肉产生最大力量的能力。薄的头部外骨骼和肌肉的附着区域很可能限制了下颌肌肉的最大力量输出。