Green Abigail R, Lewis Kevin M, Barr John T, Jones Jeffrey P, Lu Fachuang, Ralph John, Vermerris Wilfred, Sattler Scott E, Kang ChulHee
School of Molecular Biosciences (A.R.G., C.K.) and Department of Chemistry (K.M.L., J.T.B., J.P.J., C.K.), Washington State University, Pullman, Washington 99164;Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53726 (F.L., J.R.);Department of Microbiology and Cell Science and Genetics Institute, University of Florida, Gainesville, Florida 32610 (W.V.); andUnited States Department of Agriculture-Agricultural Research Service, Grain Forage and Bioenergy Research Unit, Lincoln, Nebraska 68583 (S.E.S.).
School of Molecular Biosciences (A.R.G., C.K.) and Department of Chemistry (K.M.L., J.T.B., J.P.J., C.K.), Washington State University, Pullman, Washington 99164;Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53726 (F.L., J.R.);Department of Microbiology and Cell Science and Genetics Institute, University of Florida, Gainesville, Florida 32610 (W.V.); andUnited States Department of Agriculture-Agricultural Research Service, Grain Forage and Bioenergy Research Unit, Lincoln, Nebraska 68583 (S.E.S.)
Plant Physiol. 2014 Aug;165(4):1440-1456. doi: 10.1104/pp.114.241729. Epub 2014 Jun 19.
Using S-adenosyl-methionine as the methyl donor, caffeic acid O-methyltransferase from sorghum (Sorghum bicolor; SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde. In order to determine the mechanism of SbCOMT and understand the observed reduction in the lignin syringyl-to-guaiacyl ratio of three brown midrib12 mutants that carry COMT gene missense mutations, we determined the apo-form and S-adenosyl-methionine binary complex SbCOMT crystal structures and established the ternary complex structure with 5-hydroxyconiferaldehyde by molecular modeling. These structures revealed many features shared with monocot ryegrass (Lolium perenne) and dicot alfalfa (Medicago sativa) COMTs. SbCOMT steady-state kinetic and calorimetric data suggest a random bi-bi mechanism. Based on our structural, kinetic, and thermodynamic results, we propose that the observed reactivity hierarchy among 4,5-dihydroxy-3-methoxycinnamyl (and 3,4-dihydroxycinnamyl) aldehyde, alcohol, and acid substrates arises from the ability of the aldehyde to stabilize the anionic intermediate that results from deprotonation of the 5-hydroxyl group by histidine-267. Additionally, despite the presence of other phenylpropanoid substrates in vivo, sinapaldehyde is the preferential product, as demonstrated by its low K for 5-hydroxyconiferaldehyde. Unlike its acid and alcohol substrates, the aldehydes exhibit product inhibition, and we propose that this is due to nonproductive binding of the S-cis-form of the aldehydes inhibiting productive binding of the S-trans-form. The S-cis-aldehydes most likely act only as inhibitors, because the high rotational energy barrier around the 2-propenyl bond prevents S-trans-conversion, unlike alcohol substrates, whose low 2-propenyl bond rotational energy barrier enables rapid S-cis/S-trans-interconversion.
以S-腺苷甲硫氨酸作为甲基供体,高粱(Sorghum bicolor;SbCOMT)中的咖啡酸O-甲基转移酶将其优选底物5-羟基松柏醛的5-羟基甲基化。为了确定SbCOMT的作用机制,并了解携带COMT基因错义突变的三个棕色中脉12突变体中木质素丁香基与愈创木基比率降低的原因,我们确定了脱辅基形式和S-腺苷甲硫氨酸二元复合物SbCOMT的晶体结构,并通过分子建模建立了与5-羟基松柏醛的三元复合物结构。这些结构揭示了与单子叶黑麦草(Lolium perenne)和双子叶苜蓿(Medicago sativa)COMTs共有的许多特征。SbCOMT的稳态动力学和量热数据表明其为随机双底物双产物机制。基于我们的结构、动力学和热力学结果,我们提出,在4,5-二羟基-3-甲氧基肉桂醛(和3,4-二羟基肉桂醛)的醛、醇和酸底物中观察到的反应活性层次,源于醛稳定由组氨酸-267使5-羟基去质子化产生的阴离子中间体的能力。此外,尽管体内存在其他苯丙烷类底物,但芥子醛是优先产物,这一点通过其对5-羟基松柏醛的低Km得以证明。与酸和醇底物不同,醛类表现出产物抑制作用,我们认为这是由于醛类的S-顺式形式的非生产性结合抑制了S-反式形式的生产性结合。S-顺式醛类很可能仅作为抑制剂起作用,因为与醇底物不同,2-丙烯基键周围的高旋转能垒阻止了S-反式转化,醇底物的2-丙烯基键旋转能垒较低,能够实现快速的S-顺式/S-反式互变。