Suppr超能文献

克服人工耳蜗已知成分重建中的非线性部分容积效应

Overcoming Nonlinear Partial Volume Effects in Known-Component Reconstruction of Cochlear Implants.

作者信息

Stayman J W, Dang H, Otake Y, Zbijewski W, Noble J, Dawant B, Labadie R, Carey J P, Siewerdsen J H

机构信息

Dept. of Biomedical Eng., Johns Hopkins University, Baltimore, MD USA 21205.

Dept. of Electrical Eng. and Computer Science, Vanderbilt University, Nashville, TN USA 37232.

出版信息

Proc SPIE Int Soc Opt Eng. 2013;8668:86681L. doi: 10.1117/12.2007945.

Abstract

Nonlinear partial volume (NLPV) effects can be significant for objects with large attenuation differences and fine detail structures near the spatial resolution limits of a tomographic system. This is particularly true for small metal devices like cochlear implants. While traditional model-based approaches might alleviate these artifacts through very fine sampling of the image volume and subsampling of rays to each detector element, such solutions can be extremely burdensome in terms of memory and computational requirements. The work presented in this paper leverages the model-based approach called "known-component reconstruction" (KCR) where prior knowledge of a surgical device is integrated into the estimation. In KCR, the parameterization of the object separates the volume into an unknown background anatomy and a known component with unknown registration. Thus, one can model projections of an implant at very high spatial resolution while limiting the spatial resolution of the anatomy - in effect, modeling NLPV effects where they are most significant. We present modifications of the KCR approach that can be used to largely eliminate NLPV artifacts, and demonstrate the efficacy of the modified technique (with improved image quality and accurate implant position estimates) for the cochlear implant imaging scenario.

摘要

对于具有较大衰减差异且靠近断层扫描系统空间分辨率极限的精细细节结构的物体,非线性部分容积(NLPV)效应可能很显著。对于像人工耳蜗这样的小型金属装置尤其如此。虽然传统的基于模型的方法可能通过对图像体积进行非常精细的采样以及对每个探测器元件的射线进行子采样来减轻这些伪影,但就内存和计算需求而言,这样的解决方案可能极其繁重。本文所展示的工作利用了一种名为“已知成分重建”(KCR)的基于模型的方法,其中将手术装置的先验知识整合到估计中。在KCR中,物体的参数化将体积分离为未知的背景解剖结构和具有未知配准的已知成分。因此,人们可以在非常高的空间分辨率下对植入物的投影进行建模,同时限制解剖结构的空间分辨率——实际上,在NLPV效应最显著的地方对其进行建模。我们展示了KCR方法的改进,这些改进可用于在很大程度上消除NLPV伪影,并证明了改进技术(具有更高的图像质量和准确的植入物位置估计)在人工耳蜗成像场景中的有效性。

相似文献

5
Polyenergetic Known-Component Reconstruction without Prior Shape Models.无需先验形状模型的多能已知成分重建
Proc SPIE Int Soc Opt Eng. 2017 Feb;10132. doi: 10.1117/12.2255542. Epub 2017 Mar 9.
8
Model-based tomographic reconstruction of objects containing known components.基于模型的包含已知组件的物体断层重建。
IEEE Trans Med Imaging. 2012 Oct;31(10):1837-48. doi: 10.1109/TMI.2012.2199763. Epub 2012 May 16.

引用本文的文献

本文引用的文献

2
Model-based tomographic reconstruction of objects containing known components.基于模型的包含已知组件的物体断层重建。
IEEE Trans Med Imaging. 2012 Oct;31(10):1837-48. doi: 10.1109/TMI.2012.2199763. Epub 2012 May 16.
3
3D forward and back-projection for X-ray CT using separable footprints.基于可分离投影的 X 射线 CT 的三维正向和反向投影。
IEEE Trans Med Imaging. 2010 Nov;29(11):1839-50. doi: 10.1109/TMI.2010.2050898. Epub 2010 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验