Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, WI , USA.
Reading School of Pharmacy, University of Reading , Reading, Berkshire , UK.
PeerJ. 2014 Jun 10;2:e414. doi: 10.7717/peerj.414. eCollection 2014.
Background and Purpose. In rat middle cerebral arteries, endothelium-dependent hyperpolarization (EDH) is mediated by activation of calcium-activated potassium (KCa) channels specifically KCa2.3 and KCa3.1. Lipoxygenase (LOX) products function as endothelium-derived hyperpolarizing factors (EDHFs) in rabbit arteries by stimulating KCa2.3. We investigated if LOX products contribute to EDH in rat cerebral arteries. Methods. Arachidonic acid (AA) metabolites produced in middle cerebral arteries were measured using HPLC and LC/MS. Vascular tension and membrane potential responses to SLIGRL were simultaneously recorded using wire myography and intracellular microelectrodes. Results. SLIGRL, an agonist at PAR2 receptors, caused EDH that was inhibited by a combination of KCa2.3 and KCa3.1 blockade. Non-selective LOX-inhibition reduced EDH, whereas inhibition of 12-LOX had no effect. Soluble epoxide hydrolase (sEH) inhibition enhanced the KCa2.3 component of EDH. Following NO synthase (NOS) inhibition, the KCa2.3 component of EDH was absent. Using HPLC, middle cerebral arteries metabolized (14)C-AA to 15- and 12-LOX products under control conditions. With NOS inhibition, there was little change in LOX metabolites, but increased F-type isoprostanes. 8-iso-PGF2α inhibited the KCa2.3 component of EDH. Conclusions. LOX metabolites mediate EDH in rat middle cerebral arteries. Inhibition of sEH increases the KCa2.3 component of EDH. Following NOS inhibition, loss of KCa2.3 function is independent of changes in LOX production or sEH inhibition but due to increased isoprostane production and subsequent stimulation of TP receptors. These findings have important implications in diseases associated with loss of NO signaling such as stroke; where inhibition of sEH and/or isoprostane formation may of benefit.
在大鼠大脑中动脉中,内皮依赖性超极化(EDH)是通过激活特定的钙激活钾(KCa)通道,即 KCa2.3 和 KCa3.1 来介导的。脂氧合酶(LOX)产物在兔动脉中作为内皮衍生的超极化因子(EDHFs),通过刺激 KCa2.3 发挥作用。我们研究了 LOX 产物是否有助于大鼠大脑动脉中的 EDH。
使用 HPLC 和 LC/MS 测量大脑中动脉中产生的花生四烯酸(AA)代谢物。使用线描肌动图和细胞内微电极同时记录 SLIGRL 引起的血管张力和膜电位反应。
SLIGRL,PAR2 受体激动剂,引起 EDH,该反应被 KCa2.3 和 KCa3.1 阻断的联合抑制。非选择性 LOX 抑制减少 EDH,而 12-LOX 抑制则没有效果。可溶性环氧化物水解酶(sEH)抑制增强 EDH 中的 KCa2.3 成分。在一氧化氮合酶(NOS)抑制后,EDH 的 KCa2.3 成分不存在。使用 HPLC,大脑中动脉在对照条件下将(14)C-AA 代谢为 15-和 12-LOX 产物。在 NOS 抑制下,LOX 代谢物变化不大,但 F 型异前列烷增加。8-iso-PGF2α 抑制 KCa2.3 成分的 EDH。
LOX 代谢物介导大鼠大脑中动脉中的 EDH。sEH 的抑制增加了 KCa2.3 成分的 EDH。在 NOS 抑制后,KCa2.3 功能的丧失与 LOX 产物的变化或 sEH 抑制无关,而是由于异前列烷的产生增加和随后的 TP 受体刺激所致。这些发现对于与 NO 信号丢失相关的疾病(如中风)具有重要意义;在这些疾病中,抑制 sEH 和/或异前列烷形成可能有益。