Bazet Lyonnet Bernardo, Diacovich Lautaro, Cabruja Matías, Bardou Fabienne, Quémard Annaïk, Gago Gabriela, Gramajo Hugo
Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Tuberculose et Biologie des Infections, Toulouse, France; Université de Toulouse, UPS, IPBS, Toulouse, France.
PLoS One. 2014 Jun 20;9(6):e99853. doi: 10.1371/journal.pone.0099853. eCollection 2014.
Mycobacteria contain a large variety of fatty acids which are used for the biosynthesis of several complex cell wall lipids that have been implicated in the ability of the organism to resist host defenses. The building blocks for the biosynthesis of all these lipids are provided by a fairly complex set of acyl-CoA carboxylases (ACCases) whose subunit composition and roles within these organisms have not yet been clearly established. Previous biochemical and structural studies provided strong evidences that ACCase 5 from Mycobacterium tuberculosis is formed by the AccA3, AccD5 and AccE5 subunits and that this enzyme complex carboxylates acetyl-CoA and propionyl-CoA with a clear substrate preference for the latest. In this work we used a genetic approach to unambiguously demonstrate that the products of both accD5 and accE5 genes are essential for the viability of Mycobacterium smegmatis. By obtaining a conditional mutant on the accD5-accE5 operon, we also demonstrated that the main physiological role of this enzyme complex was to provide the substrates for fatty acid and mycolic acid biosynthesis. Furthermore, enzymatic and biochemical analysis of the conditional mutant provided strong evidences supporting the notion that AccD5 and/or AccE5 have an additional role in the carboxylation of long chain acyl-CoA prior to mycolic acid condensation. These studies represent a significant step towards a better understanding of the roles of ACCases in mycobacteria and confirm ACCase 5 as an interesting target for the development of new antimycobacterial drugs.
分枝杆菌含有多种脂肪酸,这些脂肪酸用于几种复杂细胞壁脂质的生物合成,而这些脂质与该生物体抵抗宿主防御的能力有关。所有这些脂质生物合成的构建模块由一组相当复杂的酰基辅酶A羧化酶(ACCase)提供,其亚基组成及其在这些生物体中的作用尚未明确确定。先前的生化和结构研究提供了有力证据,表明结核分枝杆菌的ACCase 5由AccA3、AccD5和AccE5亚基组成,并且这种酶复合物使乙酰辅酶A和丙酰辅酶A羧化,对后者有明显的底物偏好。在这项工作中,我们采用遗传学方法明确证明accD5和accE5基因的产物对耻垢分枝杆菌的生存能力至关重要。通过获得accD5 - accE5操纵子的条件突变体,我们还证明了这种酶复合物的主要生理作用是为脂肪酸和分枝菌酸生物合成提供底物。此外,对条件突变体的酶学和生化分析提供了有力证据,支持AccD5和/或AccE5在分枝菌酸缩合之前对长链酰基辅酶A羧化具有额外作用的观点。这些研究代表了朝着更好地理解ACCase在分枝杆菌中的作用迈出的重要一步,并证实ACCase 5是开发新型抗分枝杆菌药物的一个有吸引力的靶点。