State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China.
State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
Appl Environ Microbiol. 2020 Jun 2;86(12). doi: 10.1128/AEM.00508-20.
Malonyl coenzyme A (malonyl-CoA) and methylmalonyl-CoA are the most common extender units for the biosynthesis of fatty acids and polyketides in , an industrially important producer of polyketides. Carboxylation of acetyl- and propionyl-CoAs is an essential source of malonyl- and methylmalonyl-CoAs; therefore, acyl-CoA carboxylases (ACCases) play key roles in primary and secondary metabolism. The regulation of the expression of ACCases in spp. has not been investigated previously. We characterized a TetR family transcriptional repressor, AccR, that mediates intracellular acetyl-, propionyl-, methylcrotonyl-, malonyl-, and methylmalonyl-CoA levels by controlling the transcription of genes that encode the main ACCase and enzymes associated with branched-chain amino acid metabolism in AccR bound to a 16-nucleotide palindromic binding motif (GTTAA-N6-TTAAC) in promoter regions and repressed the transcription of the operon, , , and , which are involved in the production and assimilation of acetyl- and propionyl-CoAs. Methylcrotonyl-, propionyl-, and acetyl-CoAs acted as effectors to release AccR from its target DNA, resulting in enhanced transcription of target genes by derepression. The affinity of methylcrotonyl- and propionyl-CoAs to AccR was stronger than that of acetyl-CoA. Deletion of resulted in increased concentrations of short-chain acyl-CoAs (acetyl-, propionyl-, malonyl-, and methylmalonyl-CoAs), leading to enhanced avermectin production. Avermectin production was increased by 14.5% in an deletion mutant of the industrial high-yield strain A8. Our findings clarify the regulatory mechanisms that maintain the homeostasis of short-chain acyl-CoAs in Acyl-CoA carboxylases play key roles in primary and secondary metabolism. However, the regulation of ACCase genes transcription in spp. remains unclear. Here, we demonstrated that AccR responded to intracellular acetyl-, propionyl-, and methylcrotonyl-CoA availability and mediated transcription of the genes related to production and assimilation of these compounds in When intracellular concentrations of these compounds are low, AccR binds to target genes and represses their transcription, resulting in low production of malonyl- and methylmalonyl-CoAs. When intracellular acetyl-, propionyl-, and methylcrotonyl-CoA concentrations are high, these compounds bind to AccR to dissociate AccR from target DNA, promoting the conversion of these compounds to malonyl- and methylmalonyl-CoAs. This investigation revealed how AccR coordinates short-chain acyl-CoA homeostasis in .
丙二酰辅酶 A(malonyl-CoA)和甲基丙二酰辅酶 A 是 合成脂肪酸和聚酮类化合物的最常见延伸单位, 是聚酮类化合物的工业重要生产者。乙酰辅酶 A 和丙酰辅酶 A 的羧化作用是产生丙二酰辅酶 A 和甲基丙二酰辅酶 A 的重要来源;因此,酰基辅酶 A 羧化酶(ACCases)在初级和次级代谢中起着关键作用。 spp. 中 ACCase 的表达调控以前尚未被研究过。我们描述了一个 TetR 家族转录阻遏物 AccR,它通过控制编码主要 ACCase 和与支链氨基酸代谢相关的酶的基因的转录来调节细胞内乙酰基、丙酰基、甲基丁烯酰基、丙二酰基和甲基丙二酰基-CoA 水平。AccR 结合到启动子区域的 16 个核苷酸回文结合基序(GTTAA-N6-TTAAC)上, 操纵子、 、 和 ,这些操纵子参与乙酰基和丙酰基-CoA 的产生和同化。甲基丁烯酰基、丙酰基和乙酰基-CoA 作为效应物将 AccR 从其靶 DNA 上释放出来,从而通过去阻遏增强靶基因的转录。甲基丁烯酰基和丙酰基-CoA 与 AccR 的亲和力强于乙酰基-CoA。 的缺失导致短链酰基辅酶 A(乙酰基、丙酰基、丙二酰基和甲基丙二酰基-CoA)浓度增加,导致阿维菌素产量增加。工业高产菌株 A8 的 缺失突变体中阿维菌素的产量增加了 14.5%。我们的研究结果阐明了维持 中短链酰基辅酶 A 平衡的调节机制。酰基辅酶 A 羧化酶在初级和次级代谢中起着关键作用。然而, spp. 中 ACCase 基因转录的调节仍然不清楚。在这里,我们证明 AccR 响应细胞内乙酰基、丙酰基和甲基丁烯酰基-CoA 的可用性,并介导与这些化合物的产生和同化相关的基因的转录。当这些化合物在细胞内的浓度较低时,AccR 结合到靶基因上并抑制其转录,导致丙二酰基和甲基丙二酰基-CoA 的产量较低。当细胞内乙酰基、丙酰基和甲基丁烯酰基-CoA 浓度较高时,这些化合物结合到 AccR 上,将 AccR 从靶 DNA 上解离,促进这些化合物转化为丙二酰基和甲基丙二酰基-CoA。这项研究揭示了 AccR 如何在 中协调短链酰基辅酶 A 的平衡。