Lin Ting-Wan, Melgar Melrose M, Kurth Daniel, Swamidass S Joshua, Purdon John, Tseng Teresa, Gago Gabriela, Baldi Pierre, Gramajo Hugo, Tsai Shiou-Chuan
Department of Molecular Biology and Biochemistry, University of California, Irvine, 92697, USA.
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3072-7. doi: 10.1073/pnas.0510580103. Epub 2006 Feb 21.
Mycolic acids and multimethyl-branched fatty acids are found uniquely in the cell envelope of pathogenic mycobacteria. These unusually long fatty acids are essential for the survival, virulence, and antibiotic resistance of Mycobacterium tuberculosis. Acyl-CoA carboxylases (ACCases) commit acyl-CoAs to the biosynthesis of these unique fatty acids. Unlike other organisms such as Escherichia coli or humans that have only one or two ACCases, M. tuberculosis contains six ACCase carboxyltransferase domains, AccD1-6, whose specific roles in the pathogen are not well defined. Previous studies indicate that AccD4, AccD5, and AccD6 are important for cell envelope lipid biosynthesis and that its disruption leads to pathogen death. We have determined the 2.9-Angstroms crystal structure of AccD5, whose sequence, structure, and active site are highly conserved with respect to the carboxyltransferase domain of the Streptomyces coelicolor propionyl-CoA carboxylase. Contrary to the previous proposal that AccD4-5 accept long-chain acyl-CoAs as their substrates, both crystal structure and kinetic assay indicate that AccD5 prefers propionyl-CoA as its substrate and produces methylmalonyl-CoA, the substrate for the biosyntheses of multimethyl-branched fatty acids such as mycocerosic, phthioceranic, hydroxyphthioceranic, mycosanoic, and mycolipenic acids. Extensive in silico screening of National Cancer Institute compounds and the University of California, Irvine, ChemDB database resulted in the identification of one inhibitor with a K(i) of 13.1 microM. Our results pave the way toward understanding the biological roles of key ACCases that commit acyl-CoAs to the biosynthesis of cell envelope fatty acids, in addition to providing a target for structure-based development of antituberculosis therapeutics.
分枝菌酸和多甲基支链脂肪酸仅存在于致病性分枝杆菌的细胞壁中。这些异常长的脂肪酸对于结核分枝杆菌的存活、毒力和抗生素耐药性至关重要。酰基辅酶A羧化酶(ACCase)负责将酰基辅酶A用于这些独特脂肪酸的生物合成。与大肠杆菌或人类等只有一两种ACCase的其他生物不同,结核分枝杆菌含有六个ACCase羧基转移酶结构域AccD1 - 6,其在病原体中的具体作用尚未明确界定。先前的研究表明,AccD4、AccD5和AccD6对细胞壁脂质生物合成很重要,其破坏会导致病原体死亡。我们已经确定了AccD5的2.9埃晶体结构,其序列、结构和活性位点相对于天蓝色链霉菌丙酰辅酶A羧化酶的羧基转移酶结构域高度保守。与之前认为AccD4 - 5接受长链酰基辅酶A作为底物的提议相反,晶体结构和动力学分析均表明AccD5更喜欢丙酰辅酶A作为其底物,并产生甲基丙二酰辅酶A,这是多甲基支链脂肪酸(如霉菌酸、结核硬脂酸、羟基结核硬脂酸、霉菌酸和霉菌脂酸)生物合成的底物。对美国国立癌症研究所化合物和加利福尼亚大学欧文分校化学数据库进行广泛的计算机筛选,鉴定出一种抑制剂,其抑制常数(K(i))为13.1微摩尔。我们的研究结果为理解将酰基辅酶A用于细胞壁脂肪酸生物合成的关键ACCase的生物学作用铺平了道路,此外还为基于结构的抗结核治疗药物开发提供了一个靶点。