Suppr超能文献

采用非随机双液模型进行逆流色谱中溶剂系统的选择。

Using nonrandom two-liquid model for solvent system selection in counter-current chromatography.

作者信息

Ren Da-Bing, Qin Yan-Hua, Yun Yong-Huan, Lu Hong-Mei, Chen Xiao-Qing, Liang Yi-Zeng

机构信息

College of Chemistry and Chemical engineering, Central South University, Changsha 410083, China.

College of Chemistry and Chemical engineering, Central South University, Changsha 410083, China.

出版信息

J Chromatogr A. 2014 Aug 15;1355:80-5. doi: 10.1016/j.chroma.2014.05.080. Epub 2014 Jun 8.

Abstract

Selection of an appropriate solvent system is of great importance for a successful counter-current chromatography separation. In this work, the nonrandom two-liquid (NRTL) model, a thermodynamic method, was used for predicting the partition coefficient based on a few measured partition coefficients. The NRTL method provides quite satisfactory results for model solutes in first correlating measured partition coefficient in a few representative biphasic liquid systems and then successfully predicting partition coefficient in other two-phase liquid systems. According to the predicted partition coefficient, a suitable solvent system can be screened. Assisted with the NRTL method, the solvent system composed of hexane/ethyl acetate/methanol/water (1:4:1:4, v/v) was rapidly screened for the successful separation of two major compounds with high purity from Malus hupehensis leaves. The results demonstrated that the NRTL model can offer a simple and practical strategy to estimate partition coefficients in support of CCC solvent system selection, which will significantly minimize the experimental efforts and cost involved in solvent system selection.

摘要

选择合适的溶剂系统对于逆流色谱分离的成功至关重要。在这项工作中,非随机双液(NRTL)模型,一种热力学方法,被用于基于一些测得的分配系数来预测分配系数。NRTL方法在首先关联少数代表性双相液体系统中测得的分配系数,然后成功预测其他两相液体系统中的分配系数方面,为模型溶质提供了相当令人满意的结果。根据预测的分配系数,可以筛选出合适的溶剂系统。在NRTL方法的辅助下,快速筛选出了由己烷/乙酸乙酯/甲醇/水(1:4:1:4,v/v)组成的溶剂系统,用于从湖北海棠叶中成功分离出两种高纯度的主要化合物。结果表明,NRTL模型可以提供一种简单实用的策略来估算分配系数,以支持CCC溶剂系统的选择,这将显著减少溶剂系统选择中涉及的实验工作量和成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验