Suppr超能文献

高浓度二氧化碳降低了水稻叶片光呼吸过程中氨的产生,但并未降低氨补偿点。

Elevated CO2 decreases the Photorespiratory NH3 production but does not decrease the NH3 compensation point in rice leaves.

作者信息

Miyazawa Shin-Ichi, Hayashi Kentaro, Nakamura Hirofumi, Hasegawa Toshihiro, Miyao Mitsue

机构信息

Functional Plant Research Unit, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, 305-8602 Japan Present address: Department of Molecular and Cell Biology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, 305-8687 Japan.

Carbon and Nutrient Cycles Division, National Institute for Agro-Environmental Sciences, Kannondai, Tsukuba, 305-8604 Japan.

出版信息

Plant Cell Physiol. 2014 Sep;55(9):1582-91. doi: 10.1093/pcp/pcu088. Epub 2014 Jun 20.

Abstract

The exchange of gaseous NH3 between the atmosphere and plants plays a pivotal role in controlling the global NH3 cycle. Photorespiration generates NH3 through oxygenation instead of carboxylation by the CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The future increase in the atmospheric CO2 concentration, [CO2], is expected to reduce plant NH3 production by suppressing RuBisCO oxygenation (Vo). We measured the net leaf NH3 uptake rate (FNH3) across NH3 concentrations in the air (na) ranging from 0.2 to 1.6 nmol mol(-1) at three [CO2] values (190, 360 and 750 µmol mol(-1)) using rice plants. We analyzed leaf NH3 gas exchange using a custom-made whole-leaf chamber system, and determined the NH3 compensation point (γ), a measure of potential NH3 emission, as the x-intercept of the linear relationship of FNH3 as a function of na. Our γ values were lower than those reported for other plant species. γ did not decrease under elevated [CO2], although leaf NH4 (+) content decreased with decreasing Vo at higher [CO2]. This was also the case for γ estimated from the pH and NH4 (+) concentration of the leaf apoplast solution (γ'). γ' of rice plants, grown at elevated [CO2] for months in a free-air CO2 enrichment facility, was also not decreased by elevated [CO2]. These results suggest that suppression of RuBisCO oxygenation by elevated [CO2] does not decrease potential leaf NH3 emission in rice plants.

摘要

大气与植物之间气态氨(NH₃)的交换在控制全球氨循环中起着关键作用。光呼吸通过二氧化碳固定酶核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)的加氧作用而非羧化作用产生氨。预计未来大气中二氧化碳浓度[CO₂]的增加将通过抑制RuBisCO加氧作用(Vo)来减少植物氨的产生。我们使用水稻植株,在三个[CO₂]值(190、360和750 μmol mol⁻¹)下,测量了空气中氨浓度(na)在0.2至1.6 nmol mol⁻¹范围内的叶片净氨吸收速率(FNH₃)。我们使用定制的全叶室系统分析了叶片氨气体交换,并将氨补偿点(γ)(潜在氨排放的一种度量)确定为FNH₃作为na的函数的线性关系的x轴截距。我们得到的γ值低于其他植物物种的报道值。尽管在较高[CO₂]下叶片NH₄⁺含量随Vo降低而下降,但γ在[CO₂]升高时并未降低。从叶质外体溶液的pH值和NH₄⁺浓度估算的γ'(γ')也是如此。在自由空气二氧化碳富集设施中,在升高的[CO₂]下生长数月的水稻植株的γ'也未因[CO₂]升高而降低。这些结果表明,[CO₂]升高对RuBisCO加氧作用的抑制不会降低水稻植株叶片的潜在氨排放。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验