Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium.
Acta Neuropathol. 2014 Aug;128(2):191-213. doi: 10.1007/s00401-014-1310-2. Epub 2014 Jun 22.
Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In the context of this dichotomy, we summarize and discuss the current knowledge on the spatiotemporal physiology of macrophage subsets and microglia in the healthy and diseased CNS, and elaborate on factors regulating their behavior. In addition, the impact of macrophages present in lymphoid organs on CNS pathologies is defined. The prime focus of this review is on multiple sclerosis (MS), which is characterized by inflammation, demyelination, neurodegeneration, and CNS repair, and in which microglia and macrophages have been extensively scrutinized. On one hand, microglia and macrophages promote neuroinflammatory and neurodegenerative events in MS by releasing inflammatory mediators and stimulating leukocyte activity and infiltration into the CNS. On the other hand, microglia and macrophages assist in CNS repair through the production of neurotrophic factors and clearance of inhibitory myelin debris. Finally, we define how microglia and macrophage physiology can be harnessed for new therapeutics aimed at suppressing neuroinflammatory and cytodegenerative events, as well as promoting CNS repair. We conclude that microglia and macrophages are highly dynamic cells displaying disease stage and location-specific fates in neurological disorders. Changing the physiology of divergent phagocyte subsets at particular disease stages holds promise for future therapeutics for CNS pathologies.
与小胶质细胞和单核细胞衍生的巨噬细胞一样,血管周围空间、脉络丛和脑膜中的巨噬细胞是神经炎症和神经退行性疾病中的主要效应细胞。这些吞噬细胞是高度异质的细胞,在健康、损伤和炎症的中枢神经系统中表现出时空依赖的特征。在过去的十年中,研究人员一直在争论吞噬细胞亚型和表型在中枢神经系统疾病中是致病性的还是保护性的。在这种二分法的背景下,我们总结并讨论了关于健康和患病中枢神经系统中巨噬细胞亚群和小胶质细胞的时空生理学的最新知识,并详细阐述了调节它们行为的因素。此外,还定义了淋巴器官中存在的巨噬细胞对中枢神经系统疾病的影响。这篇综述的主要重点是多发性硬化症(MS),其特征是炎症、脱髓鞘、神经退行性变和中枢神经系统修复,其中小胶质细胞和巨噬细胞已被广泛研究。一方面,小胶质细胞和巨噬细胞通过释放炎症介质和刺激白细胞活性和浸润中枢神经系统,促进 MS 中的神经炎症和神经退行性事件。另一方面,小胶质细胞和巨噬细胞通过产生神经营养因子和清除抑制性髓鞘碎片来协助中枢神经系统修复。最后,我们定义了如何利用小胶质细胞和巨噬细胞的生理学来开发新的治疗方法,旨在抑制神经炎症和细胞退行性事件,并促进中枢神经系统修复。我们得出的结论是,小胶质细胞和巨噬细胞是高度动态的细胞,在神经疾病中表现出疾病阶段和位置特异性的命运。改变特定疾病阶段不同吞噬细胞亚群的生理学有望为中枢神经系统疾病的未来治疗提供新的希望。