Suppr超能文献

基于模型的 Sholl 分析层次贝叶斯方法。

A model-based hierarchical Bayesian approach to Sholl analysis.

机构信息

Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, United States.

Department of Neuroscience, University of Rochester, Rochester, NY 14642, United States.

出版信息

Bioinformatics. 2024 Mar 29;40(4). doi: 10.1093/bioinformatics/btae156.

Abstract

MOTIVATION

Due to the link between microglial morphology and function, morphological changes in microglia are frequently used to identify pathological immune responses in the central nervous system. In the absence of pathology, microglia are responsible for maintaining homeostasis, and their morphology can be indicative of how the healthy brain behaves in the presence of external stimuli and genetic differences. Despite recent interest in high throughput methods for morphological analysis, Sholl analysis is still widely used for quantifying microglia morphology via imaging data. Often, the raw data are naturally hierarchical, minimally including many cells per image and many images per animal. However, existing methods for performing downstream inference on Sholl data rely on truncating this hierarchy so rudimentary statistical testing procedures can be used.

RESULTS

To fill this longstanding gap, we introduce a parametric hierarchical Bayesian model-based approach for analyzing Sholl data, so that inference can be performed without aggressive reduction of otherwise very rich data. We apply our model to real data and perform simulation studies comparing the proposed method with a popular alternative.

AVAILABILITY AND IMPLEMENTATION

Software to reproduce the results presented in this article is available at: https://github.com/vonkaenelerik/hierarchical_sholl. An R package implementing the proposed models is available at: https://github.com/vonkaenelerik/ShollBayes.

摘要

动机

由于小胶质细胞形态和功能之间存在联系,因此小胶质细胞的形态变化经常被用于识别中枢神经系统中的病理性免疫反应。在没有病理学的情况下,小胶质细胞负责维持体内平衡,其形态可以表明健康大脑在存在外部刺激和遗传差异时的行为方式。尽管最近人们对高通量形态分析方法感兴趣,但 Sholl 分析仍然广泛用于通过成像数据来量化小胶质细胞形态。通常,原始数据自然是分层的,每个图像至少包含多个细胞,每个动物至少包含多个图像。然而,目前用于对 Sholl 数据进行下游推断的方法依赖于截断这种层次结构,以便可以使用基本的统计测试程序。

结果

为了填补这一长期存在的空白,我们引入了一种基于参数化分层贝叶斯模型的 Sholl 数据分析方法,以便在不大量减少否则非常丰富的数据的情况下进行推断。我们将我们的模型应用于真实数据,并进行模拟研究,将提出的方法与一种流行的替代方法进行比较。

可用性和实现

可在以下网址重现本文中介绍的结果:https://github.com/vonkaenelerik/hierarchical_sholl。可在以下网址获得实现所提出模型的 R 包:https://github.com/vonkaenelerik/ShollBayes。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da5c/10985672/1c721903cab0/btae156f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验