Wang Shuo, Linde Miles H, Munde Manoj, Carvalho Victor D, Wilson W David, Poon Gregory M K
From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303 and.
the Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210-1495.
J Biol Chem. 2014 Aug 1;289(31):21605-16. doi: 10.1074/jbc.M114.575340. Epub 2014 Jun 21.
ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a "dry" mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, whereas PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high affinity PU.1 · DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydration-dependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages.
ETS家族转录因子通过结合在序列上大量重叠的同源DNA位点来调控多种基因。ETS蛋白的DNA结合结构域(ETS结构域)在结构上高度保守,但氨基酸同源性有限。为了确定ETS家族内序列多样性的机制意义,我们对Ets-1和PU.1的ETS结构域识别DNA位点的热力学和动力学进行了表征,这两种蛋白代表了ETS蛋白中氨基酸差异的极端情况。尽管在生理条件下,这两个ETS结构域以相似的亲和力结合它们的最佳位点,但它们在水合作用和抗衡离子释放的作用方面,位点识别的性质却有显著差异。数据表明存在两种不同的机制,其中Ets-1遵循一种“干性”机制,通过静电相互作用和直接的蛋白质-DNA接触快速解析位点,而PU.1利用水合作用来探测序列特异性位点,并相对于Ets-1形成一个寿命更长的复合物。高亲和力的PU.1·DNA复合物的动力学持续性可能与PU.1而非Ets-1在体内作为先驱转录因子的新作用有关。此外,PU.1的活性对于巨噬细胞和淋巴细胞的发育和功能至关重要,这些细胞呈现出渗透压可变的环境,而水合作用依赖性特异性可能代表了体内一种重要的调控机制,这一假设在原代小鼠巨噬细胞的基因表达谱中得到了支持。