Suppr超能文献

真核转录调控的非连续性本质。

The Non-continuum Nature of Eukaryotic Transcriptional Regulation.

机构信息

Department of Chemistry, Georgia State University, Atlanta, GA, USA.

Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.

出版信息

Adv Exp Med Biol. 2022;1371:11-32. doi: 10.1007/5584_2021_618.

Abstract

Eukaryotic transcription factors are versatile mediators of specificity in gene regulation. This versatility is achieved through mutual specification by context-specific DNA binding on the one hand, and identity-specific protein-protein partnerships on the other. This interactivity, known as combinatorial control, enables a repertoire of complex transcriptional outputs that are qualitatively disjoint, or non-continuum, with respect to binding affinity. This feature contrasts starkly with prokaryotic gene regulators, whose activities in general vary quantitatively in step with binding affinity. Biophysical studies on prokaryotic model systems and more recent investigations on transcription factors highlight an important role for folded state dynamics and molecular hydration in protein/DNA recognition. Analysis of molecular models of combinatorial control and recent literature in low-affinity gene regulation suggest that transcription factors harbor unique conformational dynamics that are inaccessible or unused by prokaryotic DNA-binding proteins. Thus, understanding the intrinsic dynamics involved in DNA binding and co-regulator recruitment appears to be a key to understanding how transcription factors mediate non-continuum outcomes in eukaryotic gene expression, and how such capability might have evolved from ancient, structurally conserved counterparts.

摘要

真核转录因子是基因调控特异性的多功能介质。这种多功能性是通过一方面特定于上下文的 DNA 结合,另一方面特定于身份的蛋白质-蛋白质相互作用来实现的。这种相互作用,称为组合控制,能够产生一系列复杂的转录输出,这些输出在结合亲和力方面是定性不同的,或者说是不连续的。这一特征与原核基因调控因子形成鲜明对比,原核基因调控因子的活性通常与结合亲和力呈定量变化。对原核模型系统的生物物理研究和最近对转录因子的研究强调了折叠态动力学和分子水合作用在蛋白质/DNA 识别中的重要作用。组合控制的分子模型分析和最近关于低亲和力基因调控的文献表明,转录因子具有独特的构象动力学,原核 DNA 结合蛋白无法获得或无法使用这些动力学。因此,理解 DNA 结合和共调节剂募集中涉及的固有动力学似乎是理解转录因子如何在真核基因表达中介导非连续结果的关键,以及这种能力如何从古老的、结构保守的对应物中进化而来。

相似文献

1
The Non-continuum Nature of Eukaryotic Transcriptional Regulation.
Adv Exp Med Biol. 2022;1371:11-32. doi: 10.1007/5584_2021_618.
2
Enhanced regulation of prokaryotic gene expression by a eukaryotic transcriptional activator.
Nat Commun. 2021 Jul 5;12(1):4109. doi: 10.1038/s41467-021-24434-9.
3
Origin and evolution of eukaryotic transcription factors.
Curr Opin Genet Dev. 2019 Oct;58-59:25-32. doi: 10.1016/j.gde.2019.07.010. Epub 2019 Aug 26.
4
Disentangling the many layers of eukaryotic transcriptional regulation.
Annu Rev Genet. 2012;46:43-68. doi: 10.1146/annurev-genet-110711-155437. Epub 2012 Aug 28.
5
Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes.
Annu Rev Cell Dev Biol. 2019 Oct 6;35:357-379. doi: 10.1146/annurev-cellbio-100617-062719. Epub 2019 Jul 5.
6
Regulated assembly of transcription factors and control of transcription initiation.
J Mol Biol. 2001 Nov 30;314(3):335-52. doi: 10.1006/jmbi.2001.5134.
8
The transcription cycle in eukaryotes: from productive initiation to RNA polymerase II recycling.
Biochim Biophys Acta. 2012 May;1819(5):391-400. doi: 10.1016/j.bbagrm.2012.01.010. Epub 2012 Jan 28.
9
"Structure"-function relationships in eukaryotic transcription factors: The role of intrinsically disordered regions in gene regulation.
Mol Cell. 2022 Nov 3;82(21):3970-3984. doi: 10.1016/j.molcel.2022.09.021. Epub 2022 Oct 19.
10
Stochastic models of transcription: from single molecules to single cells.
Methods. 2013 Jul 15;62(1):13-25. doi: 10.1016/j.ymeth.2013.03.026. Epub 2013 Apr 1.

本文引用的文献

1
Intrinsic disorder controls two functionally distinct dimers of the master transcription factor PU.1.
Sci Adv. 2020 Feb 21;6(8):eaay3178. doi: 10.1126/sciadv.aay3178. eCollection 2020 Feb.
2
NMR Methods for Structural Characterization of Protein-Protein Complexes.
Front Mol Biosci. 2020 Jan 28;7:9. doi: 10.3389/fmolb.2020.00009. eCollection 2020.
3
RNA Droplets.
Annu Rev Biophys. 2020 May 6;49:247-265. doi: 10.1146/annurev-biophys-052118-115508. Epub 2020 Feb 10.
4
Defining Functionally Relevant Spatial Chromatin Domains: It is a TAD Complicated.
J Mol Biol. 2020 Feb 7;432(3):653-664. doi: 10.1016/j.jmb.2019.12.006. Epub 2019 Dec 18.
5
Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes.
Annu Rev Cell Dev Biol. 2019 Oct 6;35:357-379. doi: 10.1146/annurev-cellbio-100617-062719. Epub 2019 Jul 5.
7
The glucocorticoid receptor DNA-binding domain recognizes RNA hairpin structures with high affinity.
Nucleic Acids Res. 2019 Sep 5;47(15):8180-8192. doi: 10.1093/nar/gkz486.
8
Mechanism of cognate sequence discrimination by the ETS-family transcription factor ETS-1.
J Biol Chem. 2019 Jun 21;294(25):9666-9678. doi: 10.1074/jbc.RA119.007866. Epub 2019 May 2.
9
Principles of genome folding into topologically associating domains.
Sci Adv. 2019 Apr 10;5(4):eaaw1668. doi: 10.1126/sciadv.aaw1668. eCollection 2019 Apr.
10
DNA·RNA triple helix formation can function as a -acting regulatory mechanism at the human locus.
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6130-6139. doi: 10.1073/pnas.1900107116. Epub 2019 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验