Guan HanLiang, Qian Dawei, Ren Hao, Zhang Wei, Nie Hui, Shang Erxing, Duan Jinao
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
J Ethnopharmacol. 2014 Aug 8;155(1):758-68. doi: 10.1016/j.jep.2014.06.022. Epub 2014 Jun 19.
Extracts from Ginkgo biloba L. leaves confer their therapeutic effects through the synergistic actions of flavonoid and terpenoid components, but some non-flavonoid and non-terpenoid components also exist in this extract. In the study of this paper, an investigation was carried out to compare the pharmacokinetic parameters of fourteen compounds to clarify the influences of non-flavonoid and non-terpenoid fraction (WEF) on the pharmacokinetics profile of the flavonoid fraction (FF) and the terpene lactone fraction (TLF) from Ginkgo biloba extracts.
A selective and sensitive UPLC-MS/MS method was established to determine the plasma concentrations of the fourteen compounds to compare the pharmacokinetic parameters after orally administration of FF, TLF, FF-WEF, FF-TLF, TLF-WEF and FF-TLF-WEF with approximately the same dose. At different time points, the concentration of rutin (1), isoquercitrin (2), quercetin 3-O-[4-O-(-β-D-glucosyl)-α-L-rhamnoside] (3), ginkgolide C (4), bilobalide (5), quercitrin (6), ginkgolide B (7), ginkgolide A (8), luteolin (9), quercetin (10), apigenin (11), kaempferol (12), isorhamnetin (13), genkwanin (14) in rat plasma were determined and main pharmacokinetic parameters including T1/2, Tmax, Cmax and AUC were calculated using the DAS 3.2 software package. The statistical analysis was performed using the Student׳s t-test with P<0.05 as the level of significance.
FF and WEF had no effect on the pharmacokinetic behaviors and parameters of the four terpene lactones, but the pharmacokinetic profiles and parameters of flavonoids changed while co-administered with non-flavonoid components. It was found that Cmax and AUC of six flavonoid aglycones in group FF-WEF, FF-TLF and FF-TLF-WEF had varying degrees of reduction in comparison with group FF, especially in group FF-TLF-WEF. On the contrary, the values of Cmax, Tmax and AUC of four flavonoid glycosides in group FF-TLF-WEF were significantly increased compared with those in group FF.
These results indicate that non-flavonoid components in Ginkgo biloba extracts could increase the absorption and improve the bioavailability of flavonoid glycosides but decrease the absorption and reduce the bioavailability of flavonoid aglycones.
银杏叶提取物通过黄酮类和萜类成分的协同作用发挥治疗效果,但该提取物中也存在一些非黄酮类和非萜类成分。在本文的研究中,开展了一项调查以比较14种化合物的药代动力学参数,以阐明非黄酮类和非萜类组分(WEF)对银杏叶提取物中黄酮类组分(FF)和萜类内酯组分(TLF)药代动力学特征的影响。
建立了一种选择性和灵敏的超高效液相色谱-串联质谱法,用于测定14种化合物的血浆浓度,以比较口服给予剂量大致相同的FF、TLF、FF-WEF、FF-TLF、TLF-WEF和FF-TLF-WEF后的药代动力学参数。在不同时间点,测定大鼠血浆中芦丁(1)、异槲皮苷(2)、槲皮素3-O-[4-O-(-β-D-葡萄糖基)-α-L-鼠李糖苷](3)、银杏内酯C(4)、白果内酯(5)、槲皮苷(6)、银杏内酯B(7)、银杏内酯A(8)、木犀草素(9)、槲皮素(10)、芹菜素(11)、山奈酚(12)、异鼠李素(13)、芫花素(14)的浓度,并使用DAS 3.2软件包计算包括T1/2、Tmax、Cmax和AUC在内的主要药代动力学参数。采用Student's t检验进行统计分析,以P<0.05作为显著性水平。
FF和WEF对四种萜类内酯的药代动力学行为和参数没有影响,但与非黄酮类成分共同给药时,黄酮类的药代动力学特征和参数发生了变化。发现与FF组相比,FF-WEF组、FF-TLF组和FF-TLF-WEF组中六种黄酮苷元的Cmax和AUC有不同程度的降低,尤其是在FF-TLF-WEF组。相反,与FF组相比,FF-TLF-WEF组中四种黄酮糖苷的Cmax、Tmax和AUC值显著增加。
这些结果表明,银杏叶提取物中的非黄酮类成分可增加黄酮糖苷的吸收并提高其生物利用度,但会降低黄酮苷元的吸收并降低其生物利用度。