Sánchez-Azqueta Ana, Catalano-Dupuy Daniela L, López-Rivero Arleth, Tondo María Laura, Orellano Elena G, Ceccarelli Eduardo A, Medina Milagros
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Unidad Asociada BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain.
Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
Biochim Biophys Acta. 2014 Oct;1837(10):1730-8. doi: 10.1016/j.bbabio.2014.06.003. Epub 2014 Jun 20.
Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP(+) reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP(+) coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor-acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution.
涉及氢化物转移反应中的动力学同位素效应及其温度依赖性是探索酶催化位点动力学的有力工具。在植物型铁氧化还原蛋白-NADP(+)还原酶中,FAD辅因子与NADP(H)辅酶交换一个氢化物。该家族中质体成员(FNR)的这些过程速率比细菌类成员(FPR)的要快得多。本文应用具有耦合环境涨落的全隧穿模型,研究了四种植物型FNR(两种质体型FNR代表和另外两种细菌类FNR)对NADP(+)辅酶还原的氢化物转移(HT)和氘化物转移(DT)速率及其温度依赖性。两种质体FNR的参数证实了一个具有活跃动力学贡献的隧穿反应,但同位素对阿仑尼乌斯因子的影响表明,豌豆FNR反应中供体-受体距离(DAD)动力学的贡献比鱼腥藻FNR反应中的更大。另一方面,细菌FPR的参数与被动环境重组运动主导HT坐标一致,且DAD采样或门控涨落没有贡献。这表明FPR的活性位点比FNR的更有序和刚性。这些差异必定是由于活性位点和催化机制的适应性以履行其特定的代谢作用,在蛋白质灵活性和功能优化之间达成了一种平衡。对质体酶中定点突变体的分析还表明,催化复合物中需要一个最小的最佳结构以提供有利的门控贡献。