Pacheco-Garcia Juan Luis, Loginov Dmitry S, Anoz-Carbonell Ernesto, Vankova Pavla, Palomino-Morales Rogelio, Salido Eduardo, Man Petr, Medina Milagros, Naganathan Athi N, Pey Angel L
Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain.
Institute of Microbiology-BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic.
Antioxidants (Basel). 2022 Jun 2;11(6):1110. doi: 10.3390/antiox11061110.
Allosterism is a common phenomenon in protein biochemistry that allows rapid regulation of protein stability; dynamics and function. However, the mechanisms by which allosterism occurs (by mutations or post-translational modifications (PTMs)) may be complex, particularly due to long-range propagation of the perturbation across protein structures. In this work, we have investigated allosteric communication in the multifunctional, cancer-related and antioxidant protein NQO1 by mutating several fully buried leucine residues (L7, L10 and L30) to smaller residues (V, A and G) at sites in the N-terminal domain. In almost all cases, mutated residues were not close to the FAD or the active site. Mutations L→G strongly compromised conformational stability and solubility, and L30A and L30V also notably decreased solubility. The mutation L10A, closer to the FAD binding site, severely decreased FAD binding affinity (≈20 fold vs. WT) through long-range and context-dependent effects. Using a combination of experimental and computational analyses, we show that most of the effects are found in the apo state of the protein, in contrast to other common polymorphisms and PTMs previously characterized in NQO1. The integrated study presented here is a first step towards a detailed structural-functional mapping of the mutational landscape of NQO1, a multifunctional and redox signaling protein of high biomedical relevance.
变构是蛋白质生物化学中的一种常见现象,它允许对蛋白质稳定性、动力学和功能进行快速调节。然而,变构发生的机制(通过突变或翻译后修饰(PTM))可能很复杂,特别是由于扰动在蛋白质结构中的长程传播。在这项工作中,我们通过将N端结构域中几个完全埋藏的亮氨酸残基(L7、L10和L30)突变为较小的残基(V、A和G),研究了多功能、癌症相关和抗氧化蛋白NQO1中的变构通讯。几乎在所有情况下,突变残基都不靠近FAD或活性位点。L→G突变严重损害了构象稳定性和溶解性,L30A和L30V突变也显著降低了溶解性。更靠近FAD结合位点的L10A突变通过长程和上下文依赖效应严重降低了FAD结合亲和力(与野生型相比约20倍)。通过结合实验和计算分析,我们表明,与之前在NQO1中表征的其他常见多态性和PTM不同,大多数效应出现在蛋白质的脱辅基状态。这里提出的综合研究是朝着详细绘制NQO1突变图谱迈出的第一步,NQO1是一种具有高度生物医学相关性的多功能氧化还原信号蛋白。