Suppr超能文献

与甲状腺乳头状癌侵袭性相关的分子途径。

Molecular pathways associated with aggressiveness of papillary thyroid cancer.

作者信息

Benvenga Salvatore, Koch Christian A

机构信息

Department of Clinical & Experimental Medicine, Section of Endocrinology, University of Messina, Messina, Italy.

Division of Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA ; GV (Sonny) Montgomery VA Medical Center, Jackson, MS, USA.

出版信息

Curr Genomics. 2014 Jun;15(3):162-70. doi: 10.2174/1389202915999140404100958.

Abstract

The most common thyroid malignancy is papillary thyroid cancer (PTC). Mortality rates from PTC mainly depend on its aggressiveness. Geno- and phenotyping of aggressive PTC has advanced our understanding of treatment failures and of potential future therapies. Unraveling molecular signaling pathways of PTC including its aggressive forms will hopefully pave the road to reduce mortality but also morbidity from this cancer. The mitogen-activated protein kinase and the phosphatidylinositol 3-kinase signaling pathway as well as the family of RAS oncogenes and BRAF as a member of the RAF protein family and the aberrant expression of microRNAs miR-221, miR-222, and miR-146b all play major roles in tumor initiation and progression of aggressive PTC. Small molecule tyrosine kinase inhibitors targeting BRAF-mediated events, vascular endothelial growth factor receptors, RET/PTC rearrangements, and other molecular targets, show promising results to improve treatment of radioiodine resistant, recurrent, and aggressive PTC.

摘要

最常见的甲状腺恶性肿瘤是甲状腺乳头状癌(PTC)。PTC的死亡率主要取决于其侵袭性。侵袭性PTC的基因分型和表型分析增进了我们对治疗失败原因以及未来潜在治疗方法的理解。阐明PTC(包括其侵袭性形式)的分子信号通路有望为降低这种癌症的死亡率和发病率铺平道路。丝裂原活化蛋白激酶和磷脂酰肌醇3激酶信号通路,以及RAS癌基因家族、作为RAF蛋白家族成员之一的BRAF,还有微小RNA miR-221、miR-222和miR-146b的异常表达,在侵袭性PTC的肿瘤发生和进展中均发挥主要作用。靶向BRAF介导事件、血管内皮生长因子受体、RET/PTC重排及其他分子靶点的小分子酪氨酸激酶抑制剂,在改善放射性碘难治性、复发性及侵袭性PTC的治疗方面显示出了有前景的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b06/4064555/6079a66abff7/CG-15-162_F1.jpg

相似文献

1
Molecular pathways associated with aggressiveness of papillary thyroid cancer.
Curr Genomics. 2014 Jun;15(3):162-70. doi: 10.2174/1389202915999140404100958.
2
MicroRNA-146b: A Novel Biomarker and Therapeutic Target for Human Papillary Thyroid Cancer.
Int J Mol Sci. 2017 Mar 15;18(3):636. doi: 10.3390/ijms18030636.
3
[The mitogen-activated protein kinase (MAPK) signaling pathway in papillary thyroid cancer. From the molecular bases to clinical practice].
Endocrinol Nutr. 2009 Apr;56(4):176-86. doi: 10.1016/S1575-0922(09)70982-9. Epub 2009 Jun 11.
5
MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma.
Ann Surg Oncol. 2011 Jul;18(7):2035-41. doi: 10.1245/s10434-011-1733-0. Epub 2011 May 3.
7
8
BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications.
Endocr Rev. 2007 Dec;28(7):742-62. doi: 10.1210/er.2007-0007. Epub 2007 Oct 16.
10
IRAK1, a Target of miR-146b, Reduces Cell Aggressiveness of Human Papillary Thyroid Carcinoma.
J Clin Endocrinol Metab. 2016 Nov;101(11):4357-4366. doi: 10.1210/jc.2016-2276. Epub 2016 Aug 17.

引用本文的文献

1
Construction of a Signature Model to Predict the Radioactive Iodine Response of Papillary Thyroid Cancer.
Front Endocrinol (Lausanne). 2022 May 11;13:865909. doi: 10.3389/fendo.2022.865909. eCollection 2022.
5
The increasing prevalence of chronic lymphocytic thyroiditis in papillary microcarcinoma.
Rev Endocr Metab Disord. 2018 Dec;19(4):301-309. doi: 10.1007/s11154-018-9474-z.
6
Matrine inhibits TPC-1 human thyroid cancer cells via the miR-21/PTEN/Akt pathway.
Oncol Lett. 2018 Sep;16(3):2965-2970. doi: 10.3892/ol.2018.9006. Epub 2018 Jun 21.
8
Genetic Alterations and Their Clinical Implications in High-Recurrence Risk Papillary Thyroid Cancer.
Cancer Res Treat. 2017 Oct;49(4):906-914. doi: 10.4143/crt.2016.424. Epub 2016 Dec 26.
10
Multicentre validation of a microRNA-based assay for diagnosing indeterminate thyroid nodules utilising fine needle aspirate smears.
J Clin Pathol. 2017 Jun;70(6):500-507. doi: 10.1136/jclinpath-2016-204089. Epub 2016 Oct 26.

本文引用的文献

1
Update: the status of clinical trials with kinase inhibitors in thyroid cancer.
J Clin Endocrinol Metab. 2014 May;99(5):1543-55. doi: 10.1210/jc.2013-2622. Epub 2014 Jan 13.
3
An update on molecular biology of thyroid cancers.
Crit Rev Oncol Hematol. 2014 Jun;90(3):233-52. doi: 10.1016/j.critrevonc.2013.12.007. Epub 2013 Dec 18.
4
The BRAF(V600E) mutation in papillary thyroid microcarcinoma: does the mutation have an impact on clinical outcome?
Clin Endocrinol (Oxf). 2014 Jun;80(6):899-904. doi: 10.1111/cen.12386. Epub 2014 Jan 16.
5
Sorafenib in the treatment of radioiodine-refractory differentiated thyroid cancer: a meta-analysis.
Endocr Relat Cancer. 2014 Feb 27;21(2):253-61. doi: 10.1530/ERC-13-0438. Print 2014 Apr.
6
Thyroid cancer in 2013: Advances in our understanding of differentiated thyroid cancer.
Nat Rev Endocrinol. 2014 Feb;10(2):69-70. doi: 10.1038/nrendo.2013.247. Epub 2013 Dec 3.
7
8
Prognostic implications of papillary thyroid carcinoma with tall-cell features.
Thyroid. 2014 Apr;24(4):662-70. doi: 10.1089/thy.2013.0503. Epub 2014 Jan 22.
10
Integrated analyses of microRNA and mRNA expression profiles in aggressive papillary thyroid carcinoma.
Mol Med Rep. 2013 Nov;8(5):1353-8. doi: 10.3892/mmr.2013.1699. Epub 2013 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验