Suppr超能文献

设计更安全、透明、具有降低DNA损伤潜力的二氧化硅包覆氧化锌纳米棒。

Engineering safer-by-design, transparent, silica-coated ZnO nanorods with reduced DNA damage potential.

作者信息

Sotiriou Georgios A, Watson Christa, Murdaugh Kimberly M, Darrah Thomas H, Pyrgiotakis Georgios, Elder Alison, Brain Joseph D, Demokritou Philip

机构信息

Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA.

Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA ; School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.

出版信息

Environ Sci Nano. 2014 Apr;1(2):144-153. doi: 10.1039/C3EN00062A.

Abstract

Zinc oxide (ZnO) nanoparticles absorb UV light efficiently while remaining transparent in the visible light spectrum rendering them attractive in cosmetics and polymer films. Their broad use, however, raises concerns regarding potential environmental health risks and it has been shown that ZnO nanoparticles can induce significant DNA damage and cytotoxicity. Even though research on ZnO nanoparticle synthesis has made great progress, efforts on developing safer ZnO nanoparticles that maintain their inherent optoelectronic properties while exhibiting minimal toxicity are limited. Here, a safer-by-design concept was pursued by hermetically encapsulating ZnO nanorods in a biologically inert, nanothin amorphous SiO coating during their gas-phase synthesis. It is demonstrated that the SiO nanothin layer hermetically encapsulates the core ZnO nanorods without altering their optoelectronic properties. Furthermore, the effect of SiO on the toxicological profile of the core ZnO nanorods was assessed using the Nano-Cometchip assay by monitoring DNA damage at a cellular level using human lymphoblastoid cells (TK6). Results indicate significantly lower DNA damage (>3 times) for the SiO-coated ZnO nanorods compared to uncoated ones. Such an industry-relevant, scalable, safer-by-design formulation of nanostructured materials can liberate their employment in nano-enabled products and minimize risks to the environment and human health.

摘要

氧化锌(ZnO)纳米颗粒能有效吸收紫外线,同时在可见光谱范围内保持透明,这使其在化妆品和聚合物薄膜中颇具吸引力。然而,其广泛使用引发了对潜在环境健康风险的担忧,并且已经表明ZnO纳米颗粒可导致显著的DNA损伤和细胞毒性。尽管ZnO纳米颗粒合成的研究取得了很大进展,但在开发更安全的ZnO纳米颗粒方面的努力有限,这些颗粒在保持其固有光电特性的同时表现出最小的毒性。在此,通过在气相合成过程中将ZnO纳米棒气密封装在生物惰性的纳米薄非晶SiO涂层中,追求一种设计更安全的概念。结果表明,SiO纳米薄层气密封装了核心ZnO纳米棒,而不改变其光电特性。此外,使用纳米彗星芯片分析,通过用人淋巴母细胞(TK6)在细胞水平监测DNA损伤,评估了SiO对核心ZnO纳米棒毒理学特征的影响。结果表明,与未涂层的ZnO纳米棒相比,涂有SiO的ZnO纳米棒的DNA损伤显著降低(超过3倍)。这种与行业相关、可扩展、设计更安全的纳米结构材料配方可以使其在纳米产品中的应用得以释放,并将对环境和人类健康的风险降至最低。

相似文献

引用本文的文献

10
Toxicity of nanoparticles_ challenges and opportunities.纳米颗粒的毒性:挑战与机遇
Appl Microsc. 2019 Apr 29;49(1):2. doi: 10.1007/s42649-019-0004-6.

本文引用的文献

9
Mapping the biological oxidative damage of engineered nanomaterials.绘制工程纳米材料的生物氧化损伤图谱。
Small. 2013 May 27;9(9-10):1853-65. doi: 10.1002/smll.201201995. Epub 2013 Feb 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验