Suppr超能文献

针对一个RNA测序数据系列进行基因共表达模式分层及基因本体功能挖掘。

Stratification of gene coexpression patterns and GO function mining for a RNA-Seq data series.

作者信息

Zhao Hui, Cao Fenglin, Gong Yonghui, Xu Huafeng, Fei Yiping, Wu Longyue, Ye Xiangmei, Yang Dongguang, Liu Xiuhua, Li Xia, Zhou Jin

机构信息

Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China ; Health Ministry Key Lab of Cell Transplantation, Harbin 150001, China ; Heilongjiang Institute of Hematology and Oncology, Harbin 150001, China ; College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.

Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China ; Health Ministry Key Lab of Cell Transplantation, Harbin 150001, China ; Heilongjiang Institute of Hematology and Oncology, Harbin 150001, China.

出版信息

Biomed Res Int. 2014;2014:969768. doi: 10.1155/2014/969768. Epub 2014 May 19.

Abstract

RNA-Seq is emerging as an increasingly important tool in biological research, and it provides the most direct evidence of the relationship between the physiological state and molecular changes in cells. A large amount of RNA-Seq data across diverse experimental conditions have been generated and deposited in public databases. However, most developed approaches for coexpression analyses focus on the coexpression pattern mining of the transcriptome, thereby ignoring the magnitude of gene differences in one pattern. Furthermore, the functional relationships of genes in one pattern, and notably among patterns, were not always recognized. In this study, we developed an integrated strategy to identify differential coexpression patterns of genes and probed the functional mechanisms of the modules. Two real datasets were used to validate the method and allow comparisons with other methods. One of the datasets was selected to illustrate the flow of a typical analysis. In summary, we present an approach to robustly detect coexpression patterns in transcriptomes and to stratify patterns according to their relative differences. Furthermore, a global relationship between patterns and biological functions was constructed. In addition, a freely accessible web toolkit "coexpression pattern mining and GO functional analysis" (COGO) was developed.

摘要

RNA测序正成为生物学研究中越来越重要的工具,它为细胞生理状态与分子变化之间的关系提供了最直接的证据。跨越不同实验条件的大量RNA测序数据已被生成并存储在公共数据库中。然而,大多数已开发的共表达分析方法侧重于转录组的共表达模式挖掘,从而忽略了一种模式中基因差异的大小。此外,一种模式中基因的功能关系,尤其是不同模式之间的功能关系,并不总是能被识别。在本研究中,我们开发了一种综合策略来识别基因的差异共表达模式,并探究模块的功能机制。使用两个真实数据集来验证该方法,并与其他方法进行比较。选择其中一个数据集来说明典型分析的流程。总之,我们提出了一种方法,用于稳健地检测转录组中的共表达模式,并根据它们的相对差异对模式进行分层。此外,构建了模式与生物学功能之间的全局关系。此外,还开发了一个可免费访问的网络工具包“共表达模式挖掘与GO功能分析”(COGO)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ddd/4052503/7f3512bcd2d3/BMRI2014-969768.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验