Suppr超能文献

结构保持稀疏分解在面部表情分析中的应用。

Structure-preserving sparse decomposition for facial expression analysis.

出版信息

IEEE Trans Image Process. 2014 Aug;23(8):3590-603. doi: 10.1109/TIP.2014.2331141. Epub 2014 Jun 17.

Abstract

Although facial expressions can be decomposed in terms of action units (AUs) as suggested by the facial action coding system, there have been only a few attempts that recognize expression using AUs and their composition rules. In this paper, we propose a dictionary-based approach for facial expression analysis by decomposing expressions in terms of AUs. First, we construct an AU-dictionary using domain experts' knowledge of AUs. To incorporate the high-level knowledge regarding expression decomposition and AUs, we then perform structure-preserving sparse coding by imposing two layers of grouping over AU-dictionary atoms as well as over the test image matrix columns. We use the computed sparse code matrix for each expressive face to perform expression decomposition and recognition. Since domain experts' knowledge may not always be available for constructing an AU-dictionary, we also propose a structure-preserving dictionary learning algorithm, which we use to learn a structured dictionary as well as divide expressive faces into several semantic regions. Experimental results on publicly available expression data sets demonstrate the effectiveness of the proposed approach for facial expression analysis.

摘要

虽然面部表情可以根据面部动作编码系统(FACS)中提出的动作单元(AU)进行分解,但只有少数尝试使用 AU 及其组合规则来识别表情。在本文中,我们提出了一种基于字典的方法,通过分解 AU 来进行面部表情分析。首先,我们使用领域专家对 AU 的知识构建 AU 字典。为了结合关于表情分解和 AU 的高级知识,我们通过对 AU 字典原子以及测试图像矩阵列施加两层分组来执行结构保持稀疏编码。我们使用计算出的每个表情图像的稀疏码矩阵来执行表情分解和识别。由于领域专家的知识可能并不总是可用于构建 AU 字典,因此我们还提出了一种结构保持字典学习算法,该算法用于学习结构化字典并将表达性面部图像划分为几个语义区域。在公开的表情数据集上的实验结果表明,该方法对面部表情分析是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验