Suppr超能文献

疾病诊断中的呼吸分析:方法学考量与应用

Breath analysis in disease diagnosis: methodological considerations and applications.

作者信息

Lourenço Célia, Turner Claire

机构信息

Department of Life, Health & Chemical Sciences, Chemistry and Analytical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.

出版信息

Metabolites. 2014 Jun 20;4(2):465-98. doi: 10.3390/metabo4020465.

Abstract

Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. "Breath fingerprinting", indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles.

摘要

呼吸分析是一个很有前景的领域,在多种疾病状态的非侵入性诊断方面具有巨大潜力。通过使用具有高灵敏度、准确性、精密度、低响应时间和低检测限的分析技术来评估呼出气体中挥发性有机化合物(VOCs)的浓度,这些特性对于检测人体呼出气体中的VOCs是理想的。“呼吸指纹识别”,即特定临床状态的指示,依赖于使用具有强大内置算法的多元统计方法。样本采集和分析的标准化需求是呼吸分析的主要问题,阻碍了呼气测试进入临床实践。这篇综述描述了基础研究和临床应用方面的最新科学进展,即关于采样和生物化学的问题,强调了呼吸分析在疾病诊断方面的诊断潜力。这里记录了呼吸分析中需要考虑的几个因素,包括代谢组学处理呼吸谱的需求不断增加。

相似文献

1
Breath analysis in disease diagnosis: methodological considerations and applications.
Metabolites. 2014 Jun 20;4(2):465-98. doi: 10.3390/metabo4020465.
2
Proton transfer reaction-mass spectrometry applications in medical research.
J Breath Res. 2009 Jun;3(2):020201. doi: 10.1088/1752-7163/3/2/020201. Epub 2009 Jun 9.
3
Diagnostic potential of breath analysis--focus on volatile organic compounds.
Clin Chim Acta. 2004 Sep;347(1-2):25-39. doi: 10.1016/j.cccn.2004.04.023.
4
Breath Testing in the Surgical Setting: Applications, Challenges, and Future Perspectives.
Eur Surg Res. 2023;64(3):315-322. doi: 10.1159/000531504. Epub 2023 Jun 13.
5
Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis.
Anal Bioanal Chem. 2016 Apr;408(11):2759-80. doi: 10.1007/s00216-015-9200-6. Epub 2015 Dec 16.
6
Breath Biomarkers in Diagnostic Applications.
Molecules. 2021 Sep 11;26(18):5514. doi: 10.3390/molecules26185514.
7
Breath volatile organic compounds (VOCs) as biomarkers for the diagnosis of pathological conditions: A review.
Biomed J. 2023 Aug;46(4):100623. doi: 10.1016/j.bj.2023.100623. Epub 2023 Jun 17.
8
Breath analysis: technical developments and challenges in the monitoring of human exposure to volatile organic compounds.
J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Oct 1;1002:285-99. doi: 10.1016/j.jchromb.2015.08.041. Epub 2015 Sep 4.
9
News from the Breath Analysis Summit 2011.
J Breath Res. 2012 Jun;6(2):020201. doi: 10.1088/1752-7155/6/2/020201. Epub 2012 May 23.

引用本文的文献

1
Systematic comparison of methods for offline breath sampling.
Anal Bioanal Chem. 2025 Sep;417(22):5061-5076. doi: 10.1007/s00216-025-06025-5. Epub 2025 Aug 5.
2
Wearable face mask-attached disposable printed sensor arrays for point-of-need monitoring of alkaline gases in breath.
PNAS Nexus. 2025 Apr 15;4(4):pgaf116. doi: 10.1093/pnasnexus/pgaf116. eCollection 2025 Apr.
3
Breathomics: A Non-Invasive Approach for the Diagnosis of Breast Cancer.
Bioengineering (Basel). 2025 Apr 12;12(4):411. doi: 10.3390/bioengineering12040411.
4
Chemical Nose-Based Non-Invasive Detection of Breast Cancer Using Exhaled Breath.
Sensors (Basel). 2025 Mar 31;25(7):2210. doi: 10.3390/s25072210.
8
Porosity Engineering of Dried Smart Poly(-isopropylacrylamide) Hydrogels for Gas Sensing.
Biomacromolecules. 2024 May 13;25(5):2715-2727. doi: 10.1021/acs.biomac.3c00738. Epub 2023 Dec 4.
10

本文引用的文献

1
Effects of dietary nutrients on volatile breath metabolites.
J Nutr Sci. 2013 Oct 31;2:e34. doi: 10.1017/jns.2013.26. eCollection 2013.
2
Mass spectrometry for real-time quantitative breath analysis.
J Breath Res. 2014 Jun;8(2):027101. doi: 10.1088/1752-7155/8/2/027101. Epub 2014 Mar 28.
3
Application of PTR-TOF-MS to investigate metabolites in exhaled breath of patients affected by coeliac disease under gluten free diet.
J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Sep 1;966:208-13. doi: 10.1016/j.jchromb.2014.02.015. Epub 2014 Feb 19.
4
A review of the volatiles from the healthy human body.
J Breath Res. 2014 Mar;8(1):014001. doi: 10.1088/1752-7155/8/1/014001. Epub 2014 Jan 13.
5
Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection.
J Breath Res. 2013 Dec;7(4):044001. doi: 10.1088/1752-7155/7/4/044001. Epub 2013 Nov 28.
6
Simply breath-taking? Developing a strategy for consistent breath sampling.
J Breath Res. 2013 Dec;7(4):042001. doi: 10.1088/1752-7155/7/4/042001. Epub 2013 Sep 4.
7
Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS.
J Breath Res. 2013 Sep;7(3):037110. doi: 10.1088/1752-7155/7/3/037110. Epub 2013 Aug 20.
8
Real-time metabolic monitoring with proton transfer reaction mass spectrometry.
J Breath Res. 2013 Sep;7(3):036006. doi: 10.1088/1752-7155/7/3/036006. Epub 2013 Aug 20.
10
Rapid "breath-print" of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study.
PLoS One. 2013;8(4):e59658. doi: 10.1371/journal.pone.0059658. Epub 2013 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验