Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard SE, Albuquerque, New Mexico 87106, USA.
1] State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China [2] Synfuels China, Beijing 101407, China.
Nat Commun. 2014 Jun 24;5:4179. doi: 10.1038/ncomms5179.
One-dimensional silver materials display unique optical and electrical properties with promise as functional blocks for a new generation of nanoelectronics. To date, synthetic approaches and property engineering of silver nanowires have primarily focused on chemical methods. Here we report a simple physical method of metal nanowire synthesis, based on stress-induced phase transformation and sintering of spherical Ag nanoparticle superlattices. Two phase transformations of nanoparticles under stress have been observed at distinct length scales. First, the lattice dimensions of silver nanoparticle superlattices may be reversibly manipulated between 0-8 GPa compressive stresses to enable systematic and reversible changes in mesoscale optical coupling between silver nanoparticles. Second, stresses greater than 8 GPa induced an atomic lattice phase transformation, which induced sintering of silver nanoparticles into micron-length scale nanowires. The nanowire synthesis mechanism displays a dependence on both nanoparticle crystal surface orientation and presence of particular grain boundaries to enable nanoparticle consolidation into nanowires.
一维银材料具有独特的光学和电学性能,有望成为新一代纳米电子学的功能模块。迄今为止,银纳米线的合成方法和性能工程主要集中在化学方法上。在这里,我们报告了一种基于应力诱导的相变和球形 Ag 纳米粒子超晶格烧结的金属纳米线合成的简单物理方法。在不同的尺度上观察到了纳米粒子在应力下的两个相变。首先,在 0-8GPa 的压缩应力下,银纳米粒子超晶格的晶格尺寸可以可逆地操纵,从而实现银纳米粒子之间的介观光学耦合的系统和可逆变化。其次,大于 8GPa 的应力诱导了原子晶格的相变,从而将银纳米粒子烧结成微米长度尺度的纳米线。纳米线的合成机制取决于纳米粒子的晶体表面取向和特定晶界的存在,以实现纳米粒子的固结为纳米线。