Suppr超能文献

通过近红外辐射实现转基因表达的时空模式调控。

Temporal and spatial patterning of transgene expression by near-infrared irradiation.

作者信息

Martin-Saavedra Francisco M, Cebrian Virginia, Gomez Leyre, Lopez Daniel, Arruebo Manuel, Wilson Christopher G, Franceschi Renny T, Voellmy Richard, Santamaria Jesus, Vilaboa Nuria

机构信息

CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.

Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.

出版信息

Biomaterials. 2014 Sep;35(28):8134-8143. doi: 10.1016/j.biomaterials.2014.06.009. Epub 2014 Jun 21.

Abstract

We investigated whether near-infrared (NIR) light could be employed for patterning transgene expression in plasmonic cell constructs. Hollow gold nanoparticles with a plasmon surface band absorption peaking at ∼750 nm, a wavelength within the so called "tissue optical window", were used as fillers in fibrin-based hydrogels. These composites, which efficiently transduce NIR photon energy into heat, were loaded with genetically-modified cells that harbor a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation in the presence of ligand triggered 3-dimensional patterns of transgene expression faithfully matching the illuminated areas of plasmonic cell constructs. This non-invasive technology was proven useful for remotely controlling in vivo the spatiotemporal bioavailability of transgenic vascular endothelial growth factor. The combination of spatial control by means of NIR irradiation along with safe and timed transgene induction presents a high application potential for engineering tissues in regenerative medicine scenarios.

摘要

我们研究了近红外(NIR)光是否可用于在等离子体细胞构建体中对转基因表达进行图案化。具有在约750纳米处达到峰值的等离子体表面带吸收的中空金纳米颗粒(该波长处于所谓的“组织光学窗口”内)被用作基于纤维蛋白的水凝胶中的填充剂。这些能够将NIR光子能量有效转化为热量的复合材料,装载了带有用于调节转基因表达的热激活和配体依赖性基因开关的基因修饰细胞。在配体存在的情况下进行近红外激光照射,引发了转基因表达的三维图案,与等离子体细胞构建体的照射区域精确匹配。这项非侵入性技术被证明可用于远程控制体内转基因血管内皮生长因子的时空生物利用度。通过近红外照射进行空间控制以及安全且定时的转基因诱导相结合,在再生医学场景中的组织工程方面具有很高的应用潜力。

相似文献

1
Temporal and spatial patterning of transgene expression by near-infrared irradiation.
Biomaterials. 2014 Sep;35(28):8134-8143. doi: 10.1016/j.biomaterials.2014.06.009. Epub 2014 Jun 21.
2
Remote Patterning of Transgene Expression Using Near Infrared-Responsive Plasmonic Hydrogels.
Methods Mol Biol. 2016;1408:281-92. doi: 10.1007/978-1-4939-3512-3_19.
3
Gold nanoparticles for the in situ polymerization of near-infrared responsive hydrogels based on fibrin.
Acta Biomater. 2019 Dec;100:306-315. doi: 10.1016/j.actbio.2019.09.040. Epub 2019 Sep 27.
4
Pro-angiogenic near infrared-responsive hydrogels for deliberate transgene expression.
Acta Biomater. 2018 Sep 15;78:123-136. doi: 10.1016/j.actbio.2018.08.006. Epub 2018 Aug 9.
5
Lipogels responsive to near-infrared light for the triggered release of therapeutic agents.
Acta Biomater. 2017 Oct 1;61:54-65. doi: 10.1016/j.actbio.2017.08.010. Epub 2017 Aug 8.
6
Remote control of transgene expression using noninvasive near-infrared irradiation.
J Photochem Photobiol B. 2023 May;242:112697. doi: 10.1016/j.jphotobiol.2023.112697. Epub 2023 Mar 23.
7
Near-infrared light-responsive hydrogels for on-demand dual delivery of proangiogenic growth factors.
Acta Biomater. 2024 Jul 15;183:61-73. doi: 10.1016/j.actbio.2024.05.052. Epub 2024 Jun 3.
8
Patterning expression of regenerative growth factors using high intensity focused ultrasound.
Tissue Eng Part C Methods. 2014 Oct;20(10):769-79. doi: 10.1089/ten.TEC.2013.0518. Epub 2014 Mar 11.
9
Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration.
Biomaterials. 2020 May;241:119909. doi: 10.1016/j.biomaterials.2020.119909. Epub 2020 Feb 21.
10
Enhancing of plasmonic photothermal therapy through heat-inducible transgene activity.
Nanomedicine. 2013 Jul;9(5):646-56. doi: 10.1016/j.nano.2012.11.002. Epub 2012 Nov 22.

引用本文的文献

1
A Narrative Review of Cell-Based Approaches for Cranial Bone Regeneration.
Pharmaceutics. 2022 Jan 5;14(1):132. doi: 10.3390/pharmaceutics14010132.
2
Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration.
Biomaterials. 2020 May;241:119909. doi: 10.1016/j.biomaterials.2020.119909. Epub 2020 Feb 21.
3
Using Remote Fields for Complex Tissue Engineering.
Trends Biotechnol. 2020 Mar;38(3):254-263. doi: 10.1016/j.tibtech.2019.07.005. Epub 2019 Aug 20.
4
Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells.
J Nanobiotechnology. 2019 Jan 25;17(1):16. doi: 10.1186/s12951-018-0437-z.
5
Spatiotemporally-controlled transgene expression in hydroxyapatite-fibrin composite scaffolds using high intensity focused ultrasound.
Biomaterials. 2019 Feb;194:14-24. doi: 10.1016/j.biomaterials.2018.12.011. Epub 2018 Dec 13.
6
Targeted heat activation of HSP promoters in the skin of mammalian animals and humans.
Cell Stress Chaperones. 2018 Jul;23(4):455-466. doi: 10.1007/s12192-018-0875-4. Epub 2018 Feb 7.

本文引用的文献

1
Patterning expression of regenerative growth factors using high intensity focused ultrasound.
Tissue Eng Part C Methods. 2014 Oct;20(10):769-79. doi: 10.1089/ten.TEC.2013.0518. Epub 2014 Mar 11.
2
Development of volume-stable adipose tissue constructs using polycaprolactone-based polyurethane scaffolds and fibrin hydrogels.
J Tissue Eng Regen Med. 2016 Oct;10(10):E409-E418. doi: 10.1002/term.1830. Epub 2013 Oct 30.
3
4
Spatiotemporal control of vascular endothelial growth factor expression using a heat-shock-activated, rapamycin-dependent gene switch.
Hum Gene Ther Methods. 2013 Jun;24(3):160-70. doi: 10.1089/hgtb.2013.026. Epub 2013 May 6.
5
Enhancing of plasmonic photothermal therapy through heat-inducible transgene activity.
Nanomedicine. 2013 Jul;9(5):646-56. doi: 10.1016/j.nano.2012.11.002. Epub 2012 Nov 22.
6
Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns.
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7523-8. doi: 10.1073/pnas.1204391109. Epub 2012 Apr 23.
8
Spatiotemporal control of gene expression by a light-switchable transgene system.
Nat Methods. 2012 Feb 12;9(3):266-9. doi: 10.1038/nmeth.1892.
9
Three potential mechanisms for failure of high intensity focused ultrasound ablation in cardiac tissue.
Circ Arrhythm Electrophysiol. 2012 Apr;5(2):409-16. doi: 10.1161/CIRCEP.111.967216. Epub 2012 Feb 9.
10
Gold nanoparticles in biomedical applications: recent advances and perspectives.
Chem Soc Rev. 2012 Mar 21;41(6):2256-82. doi: 10.1039/c1cs15166e. Epub 2011 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验