Phillips Joshua L, Gnanakaran S
Theoretical Biology and Biophysics Group (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico, 87545; Department of Computer Science, Middle Tennessee State University, Murfreesboro, Tennessee, 37132.
Proteins. 2015 Jan;83(1):46-65. doi: 10.1002/prot.24632. Epub 2014 Nov 18.
Many bacterial pathogens are becoming increasingly resistant to antibiotic treatments, and a detailed understanding of the molecular basis of antibiotic resistance is critical for the development of next-generation approaches for combating bacterial infections. Studies focusing on pathogens have revealed the profile of resistance in these organisms to be due primarily to the presence of multidrug resistance efflux pumps: tripartite protein complexes which span the periplasm bridging the inner and outer membranes of Gram-negative bacteria. An atomic-level resolution tripartite structure remains imperative to advancing our understanding of the molecular mechanisms of pump function using both theoretical and experimental approaches. We develop a fast and consistent method for constructing tripartite structures which leverages existing data-driven models and provide molecular modeling approaches for constructing tripartite structures of multidrug resistance efflux pumps. Our modeling studies reveal that conformational changes in the inner membrane component responsible for drug translocation have limited impact on the conformations of the other pump components, and that two distinct models derived from conflicting experimental data are both consistent with all currently available measurements. Additionally, we investigate putative drug translocation pathways via geometric simulations based on the available crystal structures of the inner membrane pump component, AcrB, bound to two drugs which occupy distinct binding sites: doxorubicin and linezolid. These simulations suggest that smaller drugs may enter the pump through a channel from the cytoplasmic leaflet of the inner membrane, while both smaller and larger drug molecules may enter through a vestibule accessible from the periplasm.
许多细菌病原体对抗生素治疗的耐药性日益增强,详细了解抗生素耐药性的分子基础对于开发对抗细菌感染的下一代方法至关重要。针对病原体的研究表明,这些生物体中的耐药性主要源于多药耐药性外排泵的存在:这是一种跨越周质、连接革兰氏阴性菌内膜和外膜的三方蛋白复合物。为了利用理论和实验方法推进我们对泵功能分子机制的理解,原子水平分辨率的三方结构仍然必不可少。我们开发了一种快速且一致的方法来构建三方结构,该方法利用现有的数据驱动模型,并提供了构建多药耐药性外排泵三方结构的分子建模方法。我们的建模研究表明,负责药物转运的内膜组分的构象变化对其他泵组分的构象影响有限,并且从相互矛盾的实验数据得出的两个不同模型都与所有当前可用的测量结果一致。此外,我们基于内膜泵组分AcrB与占据不同结合位点的两种药物(阿霉素和利奈唑胺)结合的可用晶体结构,通过几何模拟研究了假定的药物转运途径。这些模拟表明,较小的药物可能通过内膜胞质小叶的通道进入泵中,而较小和较大的药物分子都可能通过周质可及的前庭进入。