Mitrophanov Alexander Y, Wolberg Alisa S, Reifman Jaques
DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, ATTN: MCMR-TT, 504 Scott Street, Ft. Detrick, MD 21702, USA.
Mol Biosyst. 2014 Jul 29;10(9):2347-57. doi: 10.1039/c4mb00263f.
Current mechanistic knowledge of protein interactions driving blood coagulation has come largely from experiments with simple synthetic systems, which only partially represent the molecular composition of human blood plasma. Here, we investigate the ability of the suggested molecular mechanisms to account for fibrin generation and degradation kinetics in diverse, physiologically relevant in vitro systems. We represented the protein interaction network responsible for thrombin generation, fibrin formation, and fibrinolysis as a computational kinetic model and benchmarked it against published and newly generated data reflecting diverse experimental conditions. We then applied the model to investigate the ability of fibrinogen and a recently proposed prothrombin complex concentrate composition, PCC-AT (a combination of the clotting factors II, IX, X, and antithrombin), to restore normal thrombin and fibrin generation in diluted plasma. The kinetic model captured essential features of empirically detected effects of prothrombin, fibrinogen, and thrombin-activatable fibrinolysis inhibitor titrations on fibrin formation and degradation kinetics. Moreover, the model qualitatively predicted the impact of tissue factor and tPA/tenecteplase level variations on the fibrin output. In the majority of considered cases, PCC-AT combined with fibrinogen accurately approximated both normal thrombin and fibrin generation in diluted plasma, which could not be accomplished by fibrinogen or PCC-AT acting alone. We conclude that a common network of protein interactions can account for key kinetic features characterizing fibrin accumulation and degradation in human blood plasma under diverse experimental conditions. Combined PCC-AT/fibrinogen supplementation is a promising strategy to reverse the deleterious effects of dilution-induced coagulopathy associated with traumatic bleeding.
目前关于驱动血液凝固的蛋白质相互作用的机制知识,很大程度上来自于简单合成系统的实验,而这些系统仅部分代表了人类血浆的分子组成。在此,我们研究了所提出的分子机制在不同的、生理相关的体外系统中解释纤维蛋白生成和降解动力学的能力。我们将负责凝血酶生成、纤维蛋白形成和纤维蛋白溶解的蛋白质相互作用网络表示为一个计算动力学模型,并根据反映不同实验条件的已发表和新生成的数据对其进行基准测试。然后,我们应用该模型来研究纤维蛋白原和最近提出的凝血酶原复合物浓缩物组合物PCC-AT(凝血因子II、IX、X和抗凝血酶的组合)在稀释血浆中恢复正常凝血酶和纤维蛋白生成的能力。该动力学模型捕捉到了凝血酶原、纤维蛋白原和凝血酶激活的纤维蛋白溶解抑制剂滴定对纤维蛋白形成和降解动力学的经验检测效应的基本特征。此外,该模型定性地预测了组织因子和tPA/替奈普酶水平变化对纤维蛋白输出的影响。在大多数考虑的情况下,PCC-AT与纤维蛋白原联合使用能准确地模拟稀释血浆中的正常凝血酶和纤维蛋白生成,而单独使用纤维蛋白原或PCC-AT则无法做到这一点。我们得出结论,一个共同的蛋白质相互作用网络可以解释在不同实验条件下人类血浆中纤维蛋白积累和降解的关键动力学特征。联合补充PCC-AT/纤维蛋白原是一种有前景的策略,可逆转与创伤性出血相关的稀释性凝血病的有害影响。