Coleman Nichole, Brown Brandon M, Oliván-Viguera Aida, Singh Vikrant, Olmstead Marilyn M, Valero Marta Sofia, Köhler Ralf, Wulff Heike
Department of Pharmacology (N.C., B.M.B., V.S., H.W.), School of Medicine, and Department of Chemistry (M.M.O.), University of California, Davis, California; Aragon Institute of Health Sciences, Instituto de Investigación Sanitaria, Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain (A.O.-V., R.K.); and Grupo de Investigación del Medio Ambiente del Centro de Estudios Superiores, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Spain (M.S.V.).
Department of Pharmacology (N.C., B.M.B., V.S., H.W.), School of Medicine, and Department of Chemistry (M.M.O.), University of California, Davis, California; Aragon Institute of Health Sciences, Instituto de Investigación Sanitaria, Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain (A.O.-V., R.K.); and Grupo de Investigación del Medio Ambiente del Centro de Estudios Superiores, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Spain (M.S.V.)
Mol Pharmacol. 2014 Sep;86(3):342-57. doi: 10.1124/mol.114.093286. Epub 2014 Jun 23.
Small-conductance (KCa2) and intermediate-conductance (KCa3.1) calcium-activated K(+) channels are voltage-independent and share a common calcium/calmodulin-mediated gating mechanism. Existing positive gating modulators like EBIO, NS309, or SKA-31 activate both KCa2 and KCa3.1 channels with similar potency or, as in the case of CyPPA and NS13001, selectively activate KCa2.2 and KCa2.3 channels. We performed a structure-activity relationship (SAR) study with the aim of optimizing the benzothiazole pharmacophore of SKA-31 toward KCa3.1 selectivity. We identified SKA-111 (5-methylnaphtho[1,2-d]thiazol-2-amine), which displays 123-fold selectivity for KCa3.1 (EC50 111 ± 27 nM) over KCa2.3 (EC50 13.7 ± 6.9 μM), and SKA-121 (5-methylnaphtho[2,1-d]oxazol-2-amine), which displays 41-fold selectivity for KCa3.1 (EC50 109 nM ± 14 nM) over KCa2.3 (EC50 4.4 ± 1.6 μM). Both compounds are 200- to 400-fold selective over representative KV (KV1.3, KV2.1, KV3.1, and KV11.1), NaV (NaV1.2, NaV1.4, NaV1.5, and NaV1.7), as well as CaV1.2 channels. SKA-121 is a typical positive-gating modulator and shifts the calcium-concentration response curve of KCa3.1 to the left. In blood pressure telemetry experiments, SKA-121 (100 mg/kg i.p.) significantly lowered mean arterial blood pressure in normotensive and hypertensive wild-type but not in KCa3.1(-/-) mice. SKA-111, which was found in pharmacokinetic experiments to have a much longer half-life and to be much more brain penetrant than SKA-121, not only lowered blood pressure but also drastically reduced heart rate, presumably through cardiac and neuronal KCa2 activation when dosed at 100 mg/kg. In conclusion, with SKA-121, we generated a KCa3.1-specific positive gating modulator suitable for further exploring the therapeutical potential of KCa3.1 activation.
小电导(KCa2)和中电导(KCa3.1)钙激活钾通道不依赖电压,且具有共同的钙/钙调蛋白介导的门控机制。现有的正向门控调节剂,如EBIO、NS309或SKA-31,以相似的效力激活KCa2和KCa3.1通道,或者如CyPPA和NS13001的情况,选择性激活KCa2.2和KCa2.3通道。我们进行了构效关系(SAR)研究,目的是优化SKA-31的苯并噻唑药效团以实现对KCa3.1的选择性。我们鉴定出SKA-111(5-甲基萘并[1,2-d]噻唑-2-胺),它对KCa3.1(EC50 111±27 nM)的选择性比对KCa2.3(EC50 13.7±6.9 μM)高123倍,以及SKA-121(5-甲基萘并[2,1-d]恶唑-2-胺),它对KCa3.1(EC50 109 nM±14 nM)的选择性比对KCa2.3(EC50 4.4±1.6 μM)高41倍。这两种化合物对代表性的钾通道(KV1.3、KV2.1、KV3.1和KV11.1)、钠通道(NaV1.2、NaV1.4、NaV1.5和NaV1.7)以及钙通道CaV1.2的选择性都高出200至400倍。SKA-121是一种典型的正向门控调节剂,可将KCa�1的钙浓度响应曲线向左移动。在血压遥测实验中,SKA-121(100 mg/kg腹腔注射)可显著降低正常血压和高血压野生型小鼠的平均动脉血压,但对KCa3.1基因敲除小鼠无效。在药代动力学实验中发现,SKA-111的半衰期比SKA-121长得多,且脑渗透性更强,当以100 mg/kg给药时,它不仅能降低血压,还能大幅降低心率,推测是通过激活心脏和神经元中的KCa2实现的。总之,通过SKA-121,我们生成了一种KCa3.1特异性正向门控调节剂,适用于进一步探索激活KCa3.1的治疗潜力。