Department of Physiology and Membrane Protein Research Group, 2 Centre de recherche du Centre hospitalier de l'Université de Montréal, and 3 Department of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada.
J Gen Physiol. 2014 Feb;143(2):289-307. doi: 10.1085/jgp.201311097.
The Ca(2+)-activated potassium channel KCa3.1 is emerging as a therapeutic target for a large variety of health disorders. One distinguishing feature of KCa3.1 is that the channel open probability at saturating Ca(2+) concentrations (Pomax) is low, typically 0.1-0.2 for KCa3.1 wild type. This observation argues for the binding of Ca(2+) to the calmodulin (CaM)-KCa3.1 complex, promoting the formation of a preopen closed-state configuration leading to channel opening. We have previously shown that the KCa3.1 active gate is most likely located at the level of the selectivity filter. As Ca(2+)-dependent gating of KCa3.1 originates from the binding of Ca(2+) to CaM in the C terminus, the hypothesis of a gate located at the level of the selectivity filter requires that the conformational change initiated in the C terminus be transmitted to the S5 and S6 transmembrane helices, with a resulting effect on the channel pore helix directly connected to the selectivity filter. A study was thus undertaken to determine to what extent the interactions between the channel pore helix with the S5 and S6 transmembrane segments contribute to KCa3.1 gating. Molecular dynamics simulations first revealed that the largest contact area between the pore helix and the S5 plus S6 transmembrane helices involves residue F248 at the C-terminal end of the pore helix. Unitary current recordings next confirmed that modulating aromatic-aromatic interactions between F248 and W216 of the S5 transmembrane helical segment and/or perturbing the interactions between F248 and residues in S6 surrounding the glycine hinge G274 cause important changes in Pomax. This work thus provides the first evidence for a key contribution of the pore helix in setting Pomax by stabilizing the channel closed configuration through aromatic-aromatic interactions involving F248 of the pore helix. We propose that the interface pore helix/S5 constitutes a promising site for designing KCa3.1 potentiators.
钙激活钾通道 KCa3.1 作为治疗多种健康障碍的靶点正在兴起。KCa3.1 的一个显著特征是,在饱和 Ca2+浓度下(Pomax),通道的开放概率很低,通常为 KCa3.1 野生型的 0.1-0.2。这一观察结果表明,Ca2+与钙调蛋白(CaM)-KCa3.1 复合物结合,促进预开放关闭状态构象的形成,从而导致通道开放。我们之前已经表明,KCa3.1 的活性门最有可能位于选择性过滤器的水平。由于 KCa3.1 的 Ca2+依赖性门控起源于 CaM 在 C 末端与 Ca2+的结合,位于选择性过滤器水平的门控假设需要在 C 末端起始的构象变化传递到 S5 和 S6 跨膜螺旋,从而对与选择性过滤器直接相连的通道孔螺旋产生影响。因此,进行了一项研究以确定通道孔螺旋与 S5 和 S6 跨膜片段之间的相互作用在多大程度上有助于 KCa3.1 门控。分子动力学模拟首先揭示了孔螺旋与 S5 和 S6 跨膜螺旋之间的最大接触面积涉及孔螺旋 C 末端的残基 F248。随后的单通道电流记录证实,调节 F248 与 S5 跨膜螺旋片段的 W216 之间的芳环-芳环相互作用和/或扰乱 F248 与围绕甘氨酸铰链 G274 的 S6 中残基之间的相互作用,导致 Pomax 发生重要变化。这项工作因此提供了第一个证据,证明孔螺旋通过涉及孔螺旋的 F248 的芳环-芳环相互作用,稳定通道关闭构象,从而对设置 Pomax 做出了重要贡献。我们提出,孔螺旋/S5 界面构成了设计 KCa3.1 增强剂的有希望的位点。