Suppr超能文献

游泳细菌产生的流动驱动受限悬浮液中的自组织。

Fluid flows created by swimming bacteria drive self-organization in confined suspensions.

机构信息

School of Engineering, Brown University, Providence, RI 02912; and.

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9733-8. doi: 10.1073/pnas.1405698111. Epub 2014 Jun 23.

Abstract

Concentrated suspensions of swimming microorganisms and other forms of active matter are known to display complex, self-organized spatiotemporal patterns on scales that are large compared with those of the individual motile units. Despite intensive experimental and theoretical study, it has remained unclear the extent to which the hydrodynamic flows generated by swimming cells, rather than purely steric interactions between them, drive the self-organization. Here we use the recent discovery of a spiral-vortex state in confined suspensions of Bacillus subtilis to study this issue in detail. Those experiments showed that if the radius of confinement in a thin cylindrical chamber is below a critical value, the suspension will spontaneously form a steady single-vortex state encircled by a counter-rotating cell boundary layer, with spiral cell orientation within the vortex. Left unclear, however, was the flagellar orientation, and hence the cell swimming direction, within the spiral vortex. Here, using a fast simulation method that captures oriented cell-cell and cell-fluid interactions in a minimal model of discrete particle systems, we predict the striking, counterintuitive result that in the presence of collectively generated fluid motion, the cells within the spiral vortex actually swim upstream against those flows. This prediction is then confirmed by the experiments reported here, which include measurements of flagella bundle orientation and cell tracking in the self-organized state. These results highlight the complex interplay between cell orientation and hydrodynamic flows in concentrated suspensions of microorganisms.

摘要

游动微生物和其他形式的活性物质的浓缩悬浮液在与单个运动单元相比大得多的尺度上表现出复杂的、自组织的时空模式,这是众所周知的。尽管进行了密集的实验和理论研究,但游动细胞产生的流动与它们之间纯粹的立体相互作用在多大程度上驱动自组织,这一点仍不清楚。在这里,我们使用最近在枯草芽孢杆菌受限悬浮液中发现的螺旋涡旋状态来详细研究这个问题。那些实验表明,如果在薄圆柱形室中的限制半径低于临界值,悬浮液将自发地形成一个由反向旋转的细胞边界层包围的稳定单涡旋状态,在涡旋内有螺旋状的细胞取向。然而,不清楚的是螺旋涡旋内鞭毛的取向,因此也不清楚细胞的游动方向。在这里,我们使用一种快速模拟方法,该方法在离散颗粒系统的最小模型中捕获定向的细胞-细胞和细胞-流体相互作用,预测了一个惊人的、违反直觉的结果,即在集体产生的流体运动的情况下,螺旋涡旋内的细胞实际上逆流游动,与这些流动相反。这一预测随后被这里报道的实验所证实,这些实验包括对自组织状态下鞭毛束取向和细胞跟踪的测量。这些结果强调了微生物浓缩悬浮液中细胞取向和流体流动之间的复杂相互作用。

相似文献

2
Confinement stabilizes a bacterial suspension into a spiral vortex.限制(约束)使细菌悬液稳定为螺旋涡旋。
Phys Rev Lett. 2013 Jun 28;110(26):268102. doi: 10.1103/PhysRevLett.110.268102. Epub 2013 Jun 24.
4
Collective swimming and the dynamics of bacterial turbulence.群体游动与细菌湍流动力学
Biophys J. 2008 Aug;95(4):1564-74. doi: 10.1529/biophysj.107.118257. Epub 2008 May 9.
5
Dynamics of swimming bacteria: transition to directional order at high concentration.游动细菌的动力学:在高浓度下向定向有序转变
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 1):061907. doi: 10.1103/PhysRevE.83.061907. Epub 2011 Jun 14.
6
Reversal of bacterial locomotion at an obstacle.细菌在障碍物处的运动逆转。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):030901. doi: 10.1103/PhysRevE.73.030901. Epub 2006 Mar 14.
7
Self-concentration and large-scale coherence in bacterial dynamics.细菌动态中的自我聚集与大规模相干性。
Phys Rev Lett. 2004 Aug 27;93(9):098103. doi: 10.1103/PhysRevLett.93.098103. Epub 2004 Aug 24.
8
Reduction of viscosity in suspension of swimming bacteria.悬浮游动细菌中悬浮液的粘度降低。
Phys Rev Lett. 2009 Oct 2;103(14):148101. doi: 10.1103/PhysRevLett.103.148101. Epub 2009 Sep 29.
9
Circularly confined microswimmers exhibit multiple global patterns.圆形受限的微型游动器呈现出多种全局模式。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):043008. doi: 10.1103/PhysRevE.91.043008. Epub 2015 Apr 13.

引用本文的文献

2
Vortex reversal is a precursor of confined bacterial turbulence.涡旋反转是受限细菌湍流的先兆。
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2414446122. doi: 10.1073/pnas.2414446122. Epub 2025 Mar 14.
4
Collective phase transitions in confined fish schools.受限鱼群中的集体相变。
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2406293121. doi: 10.1073/pnas.2406293121. Epub 2024 Oct 21.
6
Scaling Transition of Active Turbulence from Two to Three Dimensions.主动湍流从二维到三维的标度转变。
Adv Sci (Weinh). 2024 Oct;11(38):e2402643. doi: 10.1002/advs.202402643. Epub 2024 Aug 13.
8
Viscoelasticity enhances collective motion of bacteria.粘弹性增强细菌的集体运动。
PNAS Nexus. 2023 Sep 6;2(9):pgad291. doi: 10.1093/pnasnexus/pgad291. eCollection 2023 Sep.

本文引用的文献

2
Collective motion of spherical bacteria.球形细菌的集体运动。
PLoS One. 2013 Dec 20;8(12):e83760. doi: 10.1371/journal.pone.0083760. eCollection 2013.
4
Confinement stabilizes a bacterial suspension into a spiral vortex.限制(约束)使细菌悬液稳定为螺旋涡旋。
Phys Rev Lett. 2013 Jun 28;110(26):268102. doi: 10.1103/PhysRevLett.110.268102. Epub 2013 Jun 24.
5
Fluid dynamics of bacterial turbulence.细菌湍流的流体动力学。
Phys Rev Lett. 2013 May 31;110(22):228102. doi: 10.1103/PhysRevLett.110.228102. Epub 2013 May 28.
6
Confined active nematic flow in cylindrical capillaries.受限各向异性向列相流体在圆柱形毛细管道中的流动。
Phys Rev Lett. 2013 Jan 11;110(2):026001. doi: 10.1103/PhysRevLett.110.026001. Epub 2013 Jan 10.
7
Physical properties of collective motion in suspensions of bacteria.悬浮细菌中集体运动的物理特性。
Phys Rev Lett. 2012 Dec 14;109(24):248109. doi: 10.1103/PhysRevLett.109.248109.
8
Ciliary contact interactions dominate surface scattering of swimming eukaryotes.纤毛接触相互作用主导着游动真核生物的表面散射。
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1187-92. doi: 10.1073/pnas.1210548110. Epub 2013 Jan 7.
9
Spontaneous circulation of confined active suspensions.受限活性悬浮液的自然循环。
Phys Rev Lett. 2012 Oct 19;109(16):168105. doi: 10.1103/PhysRevLett.109.168105.
10
The cell biology of peritrichous flagella in Bacillus subtilis.枯草芽孢杆菌周生鞭毛的细胞生物学。
Mol Microbiol. 2013 Jan;87(1):211-29. doi: 10.1111/mmi.12103. Epub 2012 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验