Suppr超能文献

植物细胞中的细胞质流动是通过微丝的自我组织自然产生的。

Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization.

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14132-7. doi: 10.1073/pnas.1302736110. Epub 2013 Aug 12.

Abstract

Many cells exhibit large-scale active circulation of their entire fluid contents, a process termed cytoplasmic streaming. This phenomenon is particularly prevalent in plant cells, often presenting strikingly regimented flow patterns. The driving mechanism in such cells is known: myosin-coated organelles entrain cytoplasm as they process along actin filament bundles fixed at the periphery. Still unknown, however, is the developmental process that constructs the well-ordered actin configurations required for coherent cell-scale flow. Previous experimental works on streaming regeneration in cells of Characean algae, whose longitudinal flow is perhaps the most regimented of all, hint at an autonomous process of microfilament self-organization driving the formation of streaming patterns during morphogenesis. Working from first principles, we propose a robust model of streaming emergence that combines motor dynamics with both microscopic and macroscopic hydrodynamics to explain how several independent processes, each ineffectual on its own, can reinforce to ultimately develop the patterns of streaming observed in the Characeae and other streaming species.

摘要

许多细胞表现出其整个液体内容物的大规模主动循环,这一过程称为细胞质流动。这种现象在植物细胞中尤为普遍,通常呈现出明显规则的流动模式。这种细胞中的驱动机制是已知的:肌球蛋白覆盖的细胞器在沿着固定在周边的肌动蛋白丝束移动时带动细胞质。然而,尚不清楚的是,用于构建用于连贯细胞尺度流动的有序肌动蛋白结构的发育过程。以前对 Characean 藻类细胞中流动再生的实验工作表明,其纵向流动可能是所有流动中最规则的,暗示了微丝自组织的自主过程驱动了形态发生过程中流动模式的形成。从第一性原理出发,我们提出了一个强大的流动出现模型,该模型将马达动力学与微观和宏观流体动力学结合在一起,解释了几个独立的过程,每个过程本身都没有效果,如何通过加强最终发展出在 Characeae 和其他流动物种中观察到的流动模式。

相似文献

2
Chara myosin and the energy of cytoplasmic streaming.轮藻肌球蛋白与胞质环流的能量
Plant Cell Physiol. 2006 Oct;47(10):1427-31. doi: 10.1093/pcp/pcl006. Epub 2006 Sep 8.

引用本文的文献

1
Vortex reversal is a precursor of confined bacterial turbulence.涡旋反转是受限细菌湍流的先兆。
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2414446122. doi: 10.1073/pnas.2414446122. Epub 2025 Mar 14.
2
3
Cytoplasmic stirring by active carpets.细胞质通过活跃的地毯搅动。
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2405114121. doi: 10.1073/pnas.2405114121. Epub 2024 Jul 16.
8
Go with the flow - bulk transport by molecular motors.随波逐流——分子马达的批量运输。
J Cell Sci. 2023 Mar 1;136(5). doi: 10.1242/jcs.260300. Epub 2022 Oct 17.

本文引用的文献

1
Patterning of polar active filaments on a tense cylindrical membrane.紧张圆柱膜上极性活跃丝的模式化。
Phys Rev Lett. 2013 Apr 19;110(16):168104. doi: 10.1103/PhysRevLett.110.168104. Epub 2013 Apr 18.
2
Hydrodynamics of confined active fluids.受限活性流体的流体动力学。
Phys Rev Lett. 2013 Jan 18;110(3):038101. doi: 10.1103/PhysRevLett.110.038101. Epub 2013 Jan 15.
3
Spontaneous circulation of confined active suspensions.受限活性悬浮液的自然循环。
Phys Rev Lett. 2012 Oct 19;109(16):168105. doi: 10.1103/PhysRevLett.109.168105.
4
Spontaneous motion in hierarchically assembled active matter.层状组装活性物质中的自发运动。
Nature. 2012 Nov 15;491(7424):431-4. doi: 10.1038/nature11591. Epub 2012 Nov 7.
5
Coupling of active motion and advection shapes intracellular cargo transport.主动运动和对流的耦合塑造了细胞内货物运输。
Phys Rev Lett. 2012 Jul 13;109(2):028104. doi: 10.1103/PhysRevLett.109.028104. Epub 2012 Jul 12.
10
Polar patterns of driven filaments.驱动丝的极图。
Nature. 2010 Sep 2;467(7311):73-7. doi: 10.1038/nature09312.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验