Suppr超能文献

通过统计学习识别高温压电钙钛矿的“无机基因”。

Identifying the 'inorganic gene' for high-temperature piezoelectric perovskites through statistical learning.

作者信息

Balachandran Prasanna V, Broderick Scott R, Rajan Krishna

机构信息

Department of Materials Science and Engineering and Institute for Combinatorial Discovery , Iowa State University , Ames, IA 50011, USA.

出版信息

Proc Math Phys Eng Sci. 2011 Aug 8;467(2132):2271-2290. doi: 10.1098/rspa.2010.0543. Epub 2011 Mar 2.

Abstract

This paper develops a statistical learning approach to identify potentially new high-temperature ferroelectric piezoelectric perovskite compounds. Unlike most computational studies on crystal chemistry, where the starting point is some form of electronic structure calculation, we use a data-driven approach to initiate our search. This is accomplished by identifying patterns of behaviour between discrete scalar descriptors associated with crystal and electronic structure and the reported Curie temperature () of known compounds; extracting design rules that govern critical structure-property relationships; and discovering in a quantitative fashion the exact role of these materials descriptors. Our approach applies linear manifold methods for data dimensionality reduction to discover the dominant descriptors governing structure-property correlations (the 'genes') and Shannon entropy metrics coupled to recursive partitioning methods to quantitatively assess the specific combination of descriptors that govern the link between crystal chemistry and (their 'sequencing'). We use this information to develop predictive models that can suggest new structure/chemistries and/or properties. In this manner, BiTmO-PbTiO and BiLuO-PbTiO are predicted to have a of 730C and 705C, respectively. A quantitative structure-property relationship model similar to those used in biology and drug discovery not only predicts our new chemistries but also validates published reports.

摘要

本文开发了一种统计学习方法,以识别潜在的新型高温铁电压电钙钛矿化合物。与大多数晶体化学计算研究不同,那些研究的起点是某种形式的电子结构计算,而我们采用数据驱动方法来启动搜索。这是通过识别与晶体和电子结构相关的离散标量描述符与已知化合物报道的居里温度()之间的行为模式来实现的;提取支配关键结构 - 性能关系的设计规则;并以定量方式发现这些材料描述符的确切作用。我们的方法应用线性流形方法进行数据降维,以发现支配结构 - 性能相关性的主要描述符(“基因”),并将香农熵度量与递归划分方法相结合,以定量评估支配晶体化学与(它们的“序列”)之间联系的描述符的特定组合。我们利用这些信息开发预测模型,该模型可以提出新的结构/化学组成和/或性能。通过这种方式,预测BiTmO - PbTiO和BiLuO - PbTiO的居里温度分别为730°C和705°C。一种类似于生物学和药物发现中使用的定量结构 - 性能关系模型不仅预测了我们的新化学组成,还验证了已发表的报告。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6428/4042451/276e7270e1a7/rspa20100543-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验