Collaboratory for Advanced Computing and Simulations, ‡Department of Physics and Astronomy, §Department of Computer Science, and ∥Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089-0242, United States.
Nano Lett. 2014 Jul 9;14(7):4090-6. doi: 10.1021/nl501612v. Epub 2014 Jun 26.
Hydrogen production from water using Al particles could provide a renewable energy cycle. However, its practical application is hampered by the low reaction rate and poor yield. Here, large quantum molecular dynamics simulations involving up to 16,611 atoms show that orders-of-magnitude faster reactions with higher yields can be achieved by alloying Al particles with Li. A key nanostructural design is identified as the abundance of neighboring Lewis acid-base pairs, where water-dissociation and hydrogen-production require very small activation energies. These reactions are facilitated by charge pathways across Al atoms that collectively act as a "superanion" and a surprising autocatalytic behavior of bridging Li-O-Al products. Furthermore, dissolution of Li atoms into water produces a corrosive basic solution that inhibits the formation of a reaction-stopping oxide layer on the particle surface, thereby increasing the yield. These atomistic mechanisms not only explain recent experimental findings but also predict the scalability of this hydrogen-on-demand technology at industrial scales.
利用 Al 颗粒从水中制取氢气可以提供一种可再生能源循环。然而,其实际应用受到低反应速率和低产率的限制。在此,涉及多达 16611 个原子的大量子分子动力学模拟表明,通过将 Al 颗粒与 Li 合金化,可以实现反应速率提高几个数量级,产率更高。确定了一种关键的纳米结构设计,即富含相邻的路易斯酸碱对,其中水的分解和氢气的生成需要非常小的激活能。这些反应由穿过 Al 原子的电荷通路促进,这些 Al 原子共同作用形成了一个“超阴离子”,以及桥连 Li-O-Al 产物的惊人自催化行为。此外,Li 原子溶解在水中会产生腐蚀性的碱性溶液,抑制了颗粒表面阻止反应的氧化物层的形成,从而提高了产率。这些原子机制不仅解释了最近的实验发现,还预测了这种按需制氢技术在工业规模上的可扩展性。