Nomura Ken-ichi, Kalia Rajiv K, Li Ying, Nakano Aiichiro, Rajak Pankaj, Sheng Chunyang, Shimamura Kohei, Shimojo Fuyuki, Vashishta Priya
Collaboratory for Advanced Computing and Simulations, Department of Physics &Astronomy, Department of Computer Science, Department of Chemical Engineering &Materials Science, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0242, USA.
Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439, USA.
Sci Rep. 2016 Apr 20;6:24109. doi: 10.1038/srep24109.
High-temperature oxidation of silicon-carbide nanoparticles (nSiC) underlies a wide range of technologies from high-power electronic switches for efficient electrical grid and thermal protection of space vehicles to self-healing ceramic nanocomposites. Here, multimillion-atom reactive molecular dynamics simulations validated by ab initio quantum molecular dynamics simulations predict unexpected condensation of large graphene flakes during high-temperature oxidation of nSiC. Initial oxidation produces a molten silica shell that acts as an autocatalytic 'nanoreactor' by actively transporting oxygen reactants while protecting the nanocarbon product from harsh oxidizing environment. Percolation transition produces porous nanocarbon with fractal geometry, which consists of mostly sp(2) carbons with pentagonal and heptagonal defects. This work suggests a simple synthetic pathway to high surface-area, low-density nanocarbon with numerous energy, biomedical and mechanical-metamaterial applications, including the reinforcement of self-healing composites.
碳化硅纳米颗粒(nSiC)的高温氧化是众多技术的基础,这些技术涵盖了从用于高效电网的高功率电子开关、航天器的热保护到自修复陶瓷纳米复合材料等多个领域。在此,通过从头算量子分子动力学模拟验证的数百万原子反应分子动力学模拟预测,nSiC高温氧化过程中会意外形成大片石墨烯薄片的凝聚。初始氧化产生一个熔融二氧化硅壳,它通过积极传输氧反应物,同时保护纳米碳产物免受恶劣氧化环境的影响,起到自催化“纳米反应器”的作用。渗流转变产生具有分形几何形状的多孔纳米碳,其主要由具有五边形和七边形缺陷的sp(2)碳组成。这项工作提出了一种简单的合成途径,可制备具有高表面积、低密度的纳米碳,在能源、生物医学和机械超材料等众多领域有应用,包括增强自修复复合材料。