Suppr超能文献

谷氨酸在保守的 E/DRY 三联体中对视紫红质功能特性的贡献。

Contribution of glutamic acid in the conserved E/DRY triad to the functional properties of rhodopsin.

机构信息

Department of Biophysics, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan.

出版信息

Biochemistry. 2014 Jul 15;53(27):4420-5. doi: 10.1021/bi5003772. Epub 2014 Jul 1.

Abstract

Rhodopsin is a G protein-coupled receptor specialized for photoreception and contains a light-absorbing chromophore retinal that binds to the lysine residue of opsin through a protonated Schiff base linkage. Light converts rhodopsin to an equilibrium mixture of the active state metarhodopsin II (MII) and its precursor, metarhodopsin I (MI), which have deprotonated and protonated Schiff base chromophores, respectively. This equilibrium was thought to depend on the pKa of not the Schiff base chromophore but glutamic acid E134 in the highly conserved E/DRY triad in helix III. We performed mutational analyses of E134 and nearby residues to examine whether the equilibrium is really dependent on the pKa of E134 and to obtain clues about the contribution of E134 to the G protein activation characteristics of rhodopsin. All the single mutants at position 134 except for E134D lost the characteristic pH-dependent equilibrium, indicating that the carboxyl group of E134 is responsible for the equilibrium. Interestingly, mutation at position 134 caused little change in the MI or MII spectra or G protein activation efficiency of MII, while it caused a shift of the MI-MII equilibrium. The mutants containing hydrophobic or amide-containing residues at position 134 formed an equilibrium in favor of MII, resulting in an increase in light-induced G protein activation efficiency. On the other hand, the wild type exhibited an opsin activity lower than those of the mutants, which exhibited reasonable light-dependent activities. These results strongly suggest that the evolutionary significance of E134 is not an increase in G protein activity but rather suppression of the opsin activity.

摘要

视紫红质是一种 G 蛋白偶联受体,专门用于光感受,包含一个吸收光的发色团视黄醛,通过质子化的席夫碱键与视蛋白中的赖氨酸残基结合。光将视紫红质转化为活性状态的中间视紫红质 II(MII)和其前体中间视紫红质 I(MI)的平衡混合物,它们分别具有去质子化和质子化的席夫碱发色团。这种平衡被认为取决于席夫碱发色团的 pKa,而不是螺旋 III 中高度保守的 E/DRY 三联体中的谷氨酸 E134。我们对 E134 及其附近残基进行了突变分析,以检查平衡是否真的取决于 E134 的 pKa,并获得有关 E134 对视紫红质 G 蛋白激活特性贡献的线索。除 E134D 外,位置 134 的所有单突变体都失去了特征性的 pH 依赖性平衡,表明 E134 的羧基负责平衡。有趣的是,位置 134 的突变对 MI 或 MII 光谱或 MII 的 G 蛋白激活效率几乎没有影响,但它导致了 MI-MII 平衡的转移。位置 134 含有疏水性或酰胺性残基的突变体形成有利于 MII 的平衡,导致光诱导 G 蛋白激活效率增加。另一方面,野生型表现出低于突变体的视蛋白活性,而突变体表现出合理的光依赖性活性。这些结果强烈表明,E134 的进化意义不是增加 G 蛋白活性,而是抑制视蛋白活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验