Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, IL 60607;
Beckman Institute and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9804-9. doi: 10.1073/pnas.1403586111. Epub 2014 Jun 24.
Translation arrest directed by nascent peptides and small cofactors controls expression of important bacterial and eukaryotic genes, including antibiotic resistance genes, activated by binding of macrolide drugs to the ribosome. Previous studies suggested that specific interactions between the nascent peptide and the antibiotic in the ribosomal exit tunnel play a central role in triggering ribosome stalling. However, here we show that macrolides arrest translation of the truncated ErmDL regulatory peptide when the nascent chain is only three amino acids and therefore is too short to be juxtaposed with the antibiotic. Biochemical probing and molecular dynamics simulations of erythromycin-bound ribosomes showed that the antibiotic in the tunnel allosterically alters the properties of the catalytic center, thereby predisposing the ribosome for halting translation of specific sequences. Our findings offer a new view on the role of small cofactors in the mechanism of translation arrest and reveal an allosteric link between the tunnel and the catalytic center of the ribosome.
新生肽和小辅助因子介导的翻译暂停控制着重要的细菌和真核基因的表达,包括抗生素抗性基因,这些基因通过大环内酯类药物与核糖体结合而被激活。先前的研究表明,新生肽与核糖体出口通道中的抗生素之间的特异性相互作用在触发核糖体暂停中起着核心作用。然而,在这里我们表明,当新生链只有三个氨基酸时,大环内酯类药物会阻止 ErmDL 调节肽的翻译,因为新生链太短,无法与抗生素并置。结合红霉素的核糖体的生化探测和分子动力学模拟表明,隧道中的抗生素变构地改变了催化中心的性质,从而使核糖体更容易停止特定序列的翻译。我们的发现为小辅助因子在翻译暂停机制中的作用提供了新的视角,并揭示了隧道与核糖体催化中心之间的变构联系。