J Chem Theory Comput. 2023 Apr 11;19(7):1945-1964. doi: 10.1021/acs.jctc.2c01313. Epub 2023 Mar 22.
Macromolecular machines acting on genes are at the core of life's fundamental processes, including DNA replication and repair, gene transcription and regulation, chromatin packaging, RNA splicing, and genome editing. Here, we report the increasing role of computational biophysics in characterizing the mechanisms of "machines on genes", focusing on innovative applications of computational methods and their integration with structural and biophysical experiments. We showcase how state-of-the-art computational methods, including classical and ab initio molecular dynamics to enhanced sampling techniques, and coarse-grained approaches are used for understanding and exploring gene machines for real-world applications. As this review unfolds, advanced computational methods describe the biophysical function that is unseen through experimental techniques, accomplishing the power of the "computational microscope", an expression coined by Klaus Schulten to highlight the extraordinary capability of computer simulations. Pushing the frontiers of computational biophysics toward a pragmatic representation of large multimegadalton biomolecular complexes is instrumental in bridging the gap between experimentally obtained macroscopic observables and the molecular principles playing at the microscopic level. This understanding will help harness molecular machines for medical, pharmaceutical, and biotechnological purposes.
作用于基因的生物大分子机器是生命基本过程的核心,包括 DNA 复制和修复、基因转录和调控、染色质包装、RNA 剪接和基因组编辑。在这里,我们报告了计算生物物理学在描述“基因上的机器”的机制方面的作用不断增加,重点介绍了计算方法的创新应用及其与结构和生物物理实验的整合。我们展示了如何使用最先进的计算方法,包括经典和从头算分子动力学增强采样技术,以及粗粒化方法,用于理解和探索基因机器的实际应用。随着这篇综述的展开,先进的计算方法描述了通过实验技术无法看到的生物物理功能,实现了“计算显微镜”的威力,这是 Klaus Schulten 创造的一个术语,强调了计算机模拟的非凡能力。推动计算生物物理学的前沿,朝着对大型多兆道尔顿生物分子复合物的实用表示方法发展,对于弥合实验获得的宏观可观察量与在微观水平上发挥作用的分子原理之间的差距至关重要。这种理解将有助于利用分子机器用于医学、制药和生物技术目的。