Yang Shengxue, Tongay Sefaattin, Yue Qu, Li Yongtao, Li Bo, Lu Fangyuan
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of SciencesP.O. Box 912, Beijing 100083, China.
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States.
Sci Rep. 2014 Jun 25;4:5442. doi: 10.1038/srep05442.
Transition metal dichalcogenides (TMDCs) have recently been the focus of extensive research activity owing to their fascinating physical properties. As a new member of TMDCs, Mo doped ReSe2 (Mo:ReSe2) is an octahedral structure semiconductor being optically biaxial and highly anisotropic, different from most of hexagonal layered TMDCs with optically uniaxial and relatively high crystal symmetry. We investigated the effects of physisorption of gas molecule on the few-layer Mo:ReSe2 nanosheet based photodetectors. We compared the photoresponse of the as-exfoliated device with annealed device both in air or ammonia (NH3) environment. After annealing at sub-decomposition temperatures, the Mo:ReSe2 photodetectors show a better photoresponsivity (~55.5 A/W) and higher EQE (10893%) in NH3 than in air. By theoretical investigation, we conclude that the physisorption of NH3 molecule on Mo:ReSe2 monolayer can cause the charge transfer between NH3 molecule and Mo:ReSe2 monolayer, increasing the n-type carrier density of Mo:ReSe2 monolayer. The prompt photoswitching, high photoresponsivity and different sensitivity to surrounding environment from the few-layer anisotropic Mo:ReSe2 can be used to design multifunctional optoelectronic and sensing devices.
过渡金属二硫属化物(TMDCs)因其迷人的物理性质,近来成为广泛研究活动的焦点。作为TMDCs的新成员,Mo掺杂的ReSe2(Mo:ReSe2)是一种八面体结构的半导体,具有光学双轴性和高度各向异性,这与大多数具有光学单轴性和相对较高晶体对称性的六方层状TMDCs不同。我们研究了气体分子在基于几层Mo:ReSe2纳米片的光电探测器上的物理吸附效应。我们比较了在空气或氨气(NH3)环境中,刚剥离的器件和退火器件的光响应。在亚分解温度下退火后,Mo:ReSe2光电探测器在NH3中的光响应度(~55.5 A/W)和外量子效率(EQE,10893%)比在空气中更好。通过理论研究,我们得出结论,NH3分子在Mo:ReSe2单层上的物理吸附会导致NH3分子与Mo:ReSe2单层之间发生电荷转移,增加Mo:ReSe2单层的n型载流子密度。几层各向异性的Mo:ReSe2具有快速光开关、高光响应度以及对周围环境的不同敏感性,可用于设计多功能光电器件和传感器件。