Snelder N, Ploeger B A, Luttringer O, Rigel D F, Fu F, Beil M, Stanski D R, Danhof M
Division of Pharmacology, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands.
Br J Pharmacol. 2014 Nov;171(22):5076-92. doi: 10.1111/bph.12824. Epub 2014 Sep 5.
Previously, a systems pharmacology model was developed characterizing drug effects on the interrelationship between mean arterial pressure (MAP), cardiac output (CO) and total peripheral resistance (TPR). The present investigation aims to (i) extend the previously developed model by parsing CO into heart rate (HR) and stroke volume (SV) and (ii) evaluate if the mechanism of action (MoA) of new compounds can be elucidated using only HR and MAP measurements.
Cardiovascular effects of eight drugs with diverse MoAs (amiloride, amlodipine, atropine, enalapril, fasudil, hydrochlorothiazide, prazosin and propranolol) were characterized in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats following single administrations of a range of doses. Rats were instrumented with ascending aortic flow probes and aortic catheters/radiotransmitters for continuous recording of MAP, HR and CO throughout the experiments. Data were analysed in conjunction with independent information on the time course of the drug concentration following a mechanism-based pharmacokinetic-pharmacodynamic modelling approach.
The extended model, which quantified changes in TPR, HR and SV with negative feedback through MAP, adequately described the cardiovascular effects of the drugs while accounting for circadian variations and handling effects.
A systems pharmacology model characterizing the interrelationship between MAP, CO, HR, SV and TPR was obtained in hypertensive and normotensive rats. This extended model can quantify dynamic changes in the CVS and elucidate the MoA for novel compounds, with one site of action, using only HR and MAP measurements. Whether the model can be applied for compounds with a more complex MoA remains to be established.
此前已开发出一种系统药理学模型,用于描述药物对平均动脉压(MAP)、心输出量(CO)和总外周阻力(TPR)之间相互关系的影响。本研究旨在:(i)通过将CO解析为心率(HR)和每搏输出量(SV)来扩展先前开发的模型;(ii)评估仅使用HR和MAP测量值是否能够阐明新化合物的作用机制(MoA)。
在自发性高血压大鼠(SHR)和正常血压的Wistar-Kyoto(WKY)大鼠中,单次给予一系列剂量后,对八种具有不同作用机制(MoA)的药物(氨氯吡咪、氨氯地平、阿托品、依那普利、法舒地尔、氢氯噻嗪、哌唑嗪和普萘洛尔)的心血管效应进行了表征。在整个实验过程中,大鼠安装了升主动脉血流探头和主动脉导管/无线电发射器,用于连续记录MAP、HR和CO。采用基于机制的药代动力学-药效学建模方法,结合药物浓度随时间变化的独立信息对数据进行分析。
扩展模型通过MAP的负反馈量化了TPR、HR和SV的变化,在考虑昼夜变化和处理效应的同时,充分描述了药物的心血管效应。
在高血压和正常血压大鼠中获得了一个表征MAP、CO、HR、SV和TPR之间相互关系的系统药理学模型。这个扩展模型可以量化心血管系统(CVS)的动态变化,并仅使用HR和MAP测量值阐明具有一个作用位点的新型化合物的作用机制(MoA)。该模型是否可应用于具有更复杂作用机制(MoA)的化合物仍有待确定。