Suppr超能文献

腹侧颞叶皮层的功能结构及其在分类中的作用。

The functional architecture of the ventral temporal cortex and its role in categorization.

机构信息

1] Department of Psychology, Stanford University, Stanford, California 94305, USA. [2] Stanford Neuroscience Institute, Stanford University, Stanford, California 94305, USA.

Department of Psychology, Stanford University, Stanford, California 94305, USA.

出版信息

Nat Rev Neurosci. 2014 Aug;15(8):536-48. doi: 10.1038/nrn3747. Epub 2014 Jun 25.

Abstract

Visual categorization is thought to occur in the human ventral temporal cortex (VTC), but how this categorization is achieved is still largely unknown. In this Review, we consider the computations and representations that are necessary for categorization and examine how the microanatomical and macroanatomical layout of the VTC might optimize them to achieve rapid and flexible visual categorization. We propose that efficient categorization is achieved by organizing representations in a nested spatial hierarchy in the VTC. This spatial hierarchy serves as a neural infrastructure for the representational hierarchy of visual information in the VTC and thereby enables flexible access to category information at several levels of abstraction.

摘要

视觉分类被认为发生在人类腹侧颞叶皮层(VTC)中,但这种分类是如何实现的在很大程度上仍然未知。在这篇综述中,我们考虑了分类所需的计算和表示,并研究了 VTC 的微观和宏观解剖结构如何优化这些计算和表示,以实现快速灵活的视觉分类。我们提出,通过在 VTC 中组织嵌套的空间层次结构中的表示,可以实现有效的分类。这个空间层次结构作为 VTC 中视觉信息的表示层次结构的神经基础结构,从而能够灵活地访问几个抽象级别的类别信息。

相似文献

1
The functional architecture of the ventral temporal cortex and its role in categorization.
Nat Rev Neurosci. 2014 Aug;15(8):536-48. doi: 10.1038/nrn3747. Epub 2014 Jun 25.
2
Attention reduces spatial uncertainty in human ventral temporal cortex.
Curr Biol. 2015 Mar 2;25(5):595-600. doi: 10.1016/j.cub.2014.12.050. Epub 2015 Feb 19.
3
The nature of the animacy organization in human ventral temporal cortex.
Elife. 2019 Sep 9;8:e47142. doi: 10.7554/eLife.47142.
4
Ultra-high-resolution fMRI of Human Ventral Temporal Cortex Reveals Differential Representation of Categories and Domains.
J Neurosci. 2020 Apr 8;40(15):3008-3024. doi: 10.1523/JNEUROSCI.2106-19.2020. Epub 2020 Feb 24.
6
Optic flow analysis for self-movement perception.
Int Rev Neurobiol. 2000;44:199-218. doi: 10.1016/s0074-7742(08)60743-6.
8
Visual categorization shapes feature selectivity in the primate temporal cortex.
Nature. 2002 Jan 17;415(6869):318-20. doi: 10.1038/415318a.
10
Development of visual category selectivity in ventral visual cortex does not require visual experience.
Proc Natl Acad Sci U S A. 2017 May 30;114(22):E4501-E4510. doi: 10.1073/pnas.1612862114. Epub 2017 May 15.

引用本文的文献

2
Understanding biological motion through the lens of animate motion processing.
Front Psychol. 2025 Aug 12;16:1630742. doi: 10.3389/fpsyg.2025.1630742. eCollection 2025.
3
Evidence for compositionality in fMRI visual representations via Brain Algebra.
Commun Biol. 2025 Aug 22;8(1):1263. doi: 10.1038/s42003-025-08706-4.
5
Identifying and characterizing scene representations relevant for categorization behavior.
Imaging Neurosci (Camb). 2025 Jan 21;3. doi: 10.1162/imag_a_00449. eCollection 2025.
6
Opponent visuospatial coding structures responses during memory recall and visual perception in medial parietal cortex.
Imaging Neurosci (Camb). 2025 Mar 24;3. doi: 10.1162/imag_a_00507. eCollection 2025.
7
Neural and behavioral similarity-driven tuning curves for manipulable objects.
Imaging Neurosci (Camb). 2025 Feb 18;3. doi: 10.1162/imag_a_00482. eCollection 2025.
8
Gradual change of cortical representations with growing visual expertise for synthetic shapes.
Imaging Neurosci (Camb). 2024 Aug 6;2. doi: 10.1162/imag_a_00255. eCollection 2024.
9
10
Incidental learning of predictive temporal context within cortical representations of visual shape.
Imaging Neurosci (Camb). 2024 Aug 30;2. doi: 10.1162/imag_a_00278. eCollection 2024.

本文引用的文献

1
Correction of distortion in flattened representations of the cortical surface allows prediction of V1-V3 functional organization from anatomy.
PLoS Comput Biol. 2014 Mar 27;10(3):e1003538. doi: 10.1371/journal.pcbi.1003538. eCollection 2014 Mar.
2
Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging.
Nat Med. 2013 Dec;19(12):1667-72. doi: 10.1038/nm.3390. Epub 2013 Nov 3.
3
Functional subdomains within human FFA.
J Neurosci. 2013 Oct 16;33(42):16748-66. doi: 10.1523/JNEUROSCI.1259-13.2013.
4
Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus.
Brain Struct Funct. 2015 Jan;220(1):205-19. doi: 10.1007/s00429-013-0646-z. Epub 2013 Oct 15.
5
Large-scale, high-resolution neurophysiological maps underlying FMRI of macaque temporal lobe.
J Neurosci. 2013 Sep 18;33(38):15207-19. doi: 10.1523/JNEUROSCI.1248-13.2013.
6
The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex.
Neuroimage. 2014 Jan 1;84:453-65. doi: 10.1016/j.neuroimage.2013.08.068. Epub 2013 Sep 8.
7
A network for scene processing in the macaque temporal lobe.
Neuron. 2013 Aug 21;79(4):766-81. doi: 10.1016/j.neuron.2013.06.015. Epub 2013 Jul 25.
8
Individual variability in location impacts orthographic selectivity in the "visual word form area".
J Neurosci. 2013 Jul 3;33(27):11221-6. doi: 10.1523/JNEUROSCI.5002-12.2013.
9
Temporal components in the parahippocampal place area revealed by human intracerebral recordings.
J Neurosci. 2013 Jun 12;33(24):10123-31. doi: 10.1523/JNEUROSCI.4646-12.2013.
10
The WU-Minn Human Connectome Project: an overview.
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验