Kumamaru Hiraku, Judd Suzanne E, Curtis Jeffrey R, Ramachandran Rekha, Hardy N Chantelle, Rhodes J David, Safford Monika M, Kissela Brett M, Howard George, Jalbert Jessica J, Brott Thomas G, Setoguchi Soko
From the Department of Epidemiology, Harvard School of Public Health, Boston, MA (H.K.); Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (H.K., J.J.J.); Department of Biostatistics (S.E.J., J.D.R., G.H.) and Department of Epidemiology (J.R.C.), University of Alabama at Birmingham School of Public Health; Department of Medicine, University of Alabama at Birmingham School of Medicine (J.R.C., R.R., M.M.S.); Duke Clinical Research Institute, Department of Medicine, Duke University School of Medicine, Durham, NC (N.C.H., S.S.); Department of Neurology, University of Cincinnati, OH (B.M.K.); and Department of Neurology, Mayo Clinic, Jacksonville, FL (T.G.B.).
Circ Cardiovasc Qual Outcomes. 2014 Jul;7(4):611-9. doi: 10.1161/CIRCOUTCOMES.113.000743. Epub 2014 Jun 24.
The accuracy of stroke diagnosis in administrative claims for a contemporary population of Medicare enrollees has not been studied. We assessed the validity of diagnostic coding algorithms for identifying stroke in the Medicare population by linking data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) Study to Medicare claims.
The REGARDS Study enrolled 30 239 participants ≥45 years in the United States between 2003 and 2007. Stroke experts adjudicated suspected strokes, using retrieved medical records. We linked data for participants enrolled in fee-for-service Medicare to claims files from 2003 through 2009. Using adjudicated strokes as the gold standard, we calculated accuracy measures for algorithms to identify incident and recurrent strokes. We linked data for 15 089 participants, among whom 422 participants had adjudicated strokes during follow-up. An algorithm using primary discharge diagnosis codes for acute ischemic or hemorrhagic stroke (International Classification of Diseases, Ninth Revision, Clinical Modification codes: 430, 431, 433.x1, 434.x1, 436) had a positive predictive value of 92.6% (95% confidence interval, 88.8%-96.4%), a specificity of 99.8% (99.6%-99.9%), and a sensitivity of 59.5% (53.8%-65.1%). An algorithm using only acute ischemic stroke codes (433.x1, 434.x1, 436) had a positive predictive value of 91.1% (95% confidence interval, 86.6%-95.5%), a specificity of 99.8% (99.7%-99.9%), and a sensitivity of 58.6% (52.4%-64.7%).
Claims-based algorithms to identify stroke in a contemporary Medicare cohort had high positive predictive value and specificity, supporting their use as outcomes for etiologic and comparative effectiveness studies in similar populations. These inpatient algorithms are unsuitable for estimating stroke incidence because of low sensitivity.
尚未对当代医疗保险参保人群行政索赔中的中风诊断准确性进行研究。我们通过将中风地理和种族差异原因(REGARDS)研究的数据与医疗保险索赔数据相链接,评估了医疗保险人群中识别中风的诊断编码算法的有效性。
REGARDS研究在2003年至2007年间招募了美国30239名年龄≥45岁的参与者。中风专家利用检索到的医疗记录对疑似中风病例进行判定。我们将参加按服务收费医疗保险的参与者的数据与2003年至2009年的索赔文件相链接。以判定的中风病例作为金标准,我们计算了识别新发和复发性中风的算法的准确性指标。我们链接了15089名参与者的数据,其中422名参与者在随访期间被判定为中风。一种使用急性缺血性或出血性中风的主要出院诊断编码(国际疾病分类第九版临床修订本编码:430、431、433.x1、434.x1、436)的算法,其阳性预测值为92.6%(95%置信区间,88.8%-96.4%),特异性为99.8%(99.6%-99.9%),敏感性为59.5%(53.8%-65.1%)。一种仅使用急性缺血性中风编码(433.x1、434.x1、436)的算法,其阳性预测值为91.1%(95%置信区间,86.6%-95.5%),特异性为99.8%(99.7%-99.9%),敏感性为58.6%(52.4%-64.7%)。
在当代医疗保险队列中识别中风的基于索赔的算法具有较高的阳性预测值和特异性,支持将其用作类似人群病因学和比较有效性研究的结果。由于敏感性较低,这些住院算法不适用于估计中风发病率。