Center for Nanophase Materials Sciences and Computer Science & Mathematics Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.
Acc Chem Res. 2014 Nov 18;47(11):3395-405. doi: 10.1021/ar500180h. Epub 2014 Jun 25.
CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design by providing atomic level understanding of the underlying physicochemical phenomena (illuminating connections between experiments). It can also provide the ability to explore new materials and conditions before they are realized in the laboratory. With tight integration and feedback with experiment, it becomes feasible to identify promising materials or processes for targeted energy applications. In this Account, we highlight recent advances and success in using an integrated approach based on electronic structure simulations and scanning probe microscopy techniques to study and design functional materials formed from the self-assembly of molecules into supramolecular or polymeric architectures on substrates.
概述:能源对社会的至关重要性继续要求不懈地追求对能量做出响应的材料,这些材料能够在分子水平上连接基本的化学结构,并实现改进的功能和性能。通过利用自组装的力量,有可能实现这一需求,自组装是一种自发的过程,其中分子或更大的实体由于主要是非共价(弱)相互作用而形成有序的聚集体。自组装是分子器件的自下而上设计的关键,因为在自上而下的方法(例如光刻)中,几乎原子级别的控制是很难实现的。然而,虽然在单晶等简单系统中的功能通常可以预先评估,但由于缺乏对纳米级相互作用、介观结构和宏观有序的理解和控制,预测各种自组装分子结构的功能变得复杂。为了为提供实际解决方案奠定基础,必须深入了解负责在各种支撑基底上自组装分子和混合材料的化学和物理机制。典型的分子自组装涉及非共价分子间和基底-分子相互作用。由于多体相互作用的组合以及基底原子晶格和电子结构的局部或集体影响,这些相互作用仍然理解不足。为了解开控制材料结构和宏观物理、化学、机械、电气和输运性质的基础物理化学过程,需要紧密结合理论、建模和模拟与精密合成、先进的实验表征和器件测量。理论、建模和模拟可以通过提供对底层物理化学现象的原子水平理解(阐明实验之间的联系)来加速材料理解和设计的过程。它还可以提供在实验室中实现之前探索新材料和条件的能力。通过与实验的紧密结合和反馈,就有可能确定针对特定能源应用的有前途的材料或工艺。在本综述中,我们强调了使用基于电子结构模拟和扫描探针显微镜技术的集成方法来研究和设计在基底上自组装成超分子或聚合物结构的分子形成的功能材料方面的最新进展和成功。
Acc Chem Res. 2014-6-25
Acc Chem Res. 2014-10-24
Acc Chem Res. 2014-9-5
Acc Chem Res. 2014-9-22
Acc Chem Res. 2014-5-29
Acc Chem Res. 2010-10-13
Acc Chem Res. 2014-3-17