Suppr超能文献

离子自组装用于功能分级纳米结构材料。

Ionic self-assembly for functional hierarchical nanostructured materials.

机构信息

School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom.

出版信息

Acc Chem Res. 2014 Dec 16;47(12):3428-38. doi: 10.1021/ar500162a. Epub 2014 Sep 5.

Abstract

CONSPECTUS

The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons, specifically deoxyguanosine monophosphate. This approach proved, in combination with block copolymer (BCP) self-assembly, very fruitful for the construction of complex and hierarchical functional materials across multiple length scales. Molecular frustration and incommensurability, which played a major role in structure formation in combination with nucleotide assembly, have now become important tools to tune supramolecular structure formation. These concepts, that is, the use of BCP assembly and incommensurability, in combination with metal-containing polymeric materials, have provided access to novel supramolecular morphologies and, more importantly, design rules to prepare such constructs. These design rules are now also being applied to the assembly of electroactive oligo(aniline)-based materials for the preparation of highly ordered functional soft materials, and present an opportunity for materials development for applications in energy storage. In this Account, we therefore discuss investigations into (i) the inclusion and preparation of supramolecular photoactive and electroactive materials; (ii) the exploitation and control over multiple noncovalent interactions to fine-tune function, internal structure, and long-range order and (iii) exploration of construction over multiple length scales by combination of ISA with well-known BCP self-assembly. Combination of ISA with tuning of volume fractions, mutual compatibility, and molecular frustration now provides a versatile tool kit to construct complex and hierarchical functional materials in a facile noncovalent way. A direct challenge for future ISA activities would certainly be the construction of functional mesoscale objects. However, within a broader scientific context, the challenge would be to exploit this powerful assembly tool for application in areas of research with societal impact, for example, energy storage and generation. The hope is that this Account will provide a platform for such future research activities and opportunities.

摘要

概述

通过自组装原理,通过合理利用各种非共价相互作用来控制自组装过程,可以通过多种不同途径解决跨越多个长度尺度构建软功能材料的挑战。正是在这一挑战的背景下,我们在过去十年中广泛探索了一种用于材料构建的重要方法:在我们的离子自组装(ISA)方法中利用静电相互作用。在这种方法中,精心选择的带电荷表面活性剂和带相反电荷的构建块(或 tectons)的协同组装为合理设计和生产功能性纳米结构材料提供了简便的非共价途径。通常,我们的研究工作是从建立构建新型非共价液晶(LC)材料的规则开始的。我们发现,使用双尾表面活性剂物种(特别是支化双尾表面活性剂)可轻松形成热致(并且在某些情况下,溶致)相,这通过广泛的温度依赖 X 射线和光显微镜研究得到了证明。从这一核心活动领域,研究扩展到涵盖超越简单构建各向异性材料的问题,转向包括和利用可切换功能的挑战。使用光活性偶氮苯含 ISA 材料提供了利用光取向和表面浮雕光栅形成的机会。这些各向异性 LC 材料的制备很有趣,因为目标是易于生产用于显示应用和数据存储的一次性和低成本光学组件。然而,光取向过程的高昂成本阻碍了这些材料的进一步开发。我们还扩展了我们的活动,探索与生物相关 tectons(特别是脱氧鸟苷单磷酸)的 ISA。这种方法与嵌段共聚物(BCP)自组装相结合,对于在多个长度尺度上构建复杂和分层的功能材料非常有成效。分子受挫和不可公度性在核苷酸组装的组合中在结构形成中起主要作用,现在已成为调节超分子结构形成的重要工具。这些概念,即 BCP 组装和不可公度性的结合,以及与含金属的聚合物材料的结合,为新型超分子形态提供了途径,更重要的是,为制备这些结构提供了设计规则。这些设计规则现在也正在用于电活性寡聚(苯胺)基材料的组装,以制备高度有序的功能软材料,并为储能应用中的材料开发提供了机会。在本账户中,我们因此讨论了(i)包含和制备超分子光活性和电活性材料;(ii)通过精细调整功能、内部结构和长程有序来探索和控制多种非共价相互作用;以及(iii)通过 ISA 与众所周知的 BCP 自组装的结合来探索跨越多个长度尺度的构建。ISA 与体积分数、相互兼容性和分子受挫的调谐的结合现在为通过简便的非共价方式构建复杂和分层功能材料提供了多功能工具包。ISA 未来活动的直接挑战肯定是构建功能性介观物体。然而,在更广泛的科学背景下,挑战将是利用这种强大的组装工具应用于具有社会影响的研究领域,例如储能和发电。希望本账户将为未来的研究活动和机会提供一个平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验